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SUMMARY

This doctoral thesis studies the effect of cognition in wireless networks from an information

theoretic perspective. In a communication network, cognition is the ability of a device to

sense the transmissions of neighboring nodes and adapt its own transmissions to the sensed

environment: the concept is intrinsically linked to the wireless environment, where devices can

overhear each others’ transmissions. Although of crucial interest in the development of future

technologies, cognition is still only starting to be studied and understood. In this thesis, we seek

to understand cognition from a theoretical perspective, and to do so utilize statistical models

of the wireless medium and consider a limited, and tractable, number of devices. We study the

effect of cognition by characterizing the transmission rates that may be achieved with the use of

cognitive devices. In some scenarios, we determine the optimal transmission strategies, which

point at the relevance and improvements of cooperation among devices. This is of particular

contemporary relevance, as spectrum availability and interference among devices are the two

crucial factors in limiting the transmission rates in modern wireless networks. We show that

cognition is able to effectively remove such hindrances by effectively managing and controlling

the interference at the cost of an increase in the device’s processing complexity.

We focus one a specific models of transmission channel: the cognitive interference channel.

In the cognitive interference channel two transmitter/receiver pairs exchange messages over

a common channel, and thus interfere with one another. Each transmitter wishes to send a

message to its intended receiver. One of the transmitters, referred to as the cognitive user,

ix



SUMMARY (Continued)

in addition to its own message, has knowledge of the message of the other transmitter, the

primary user. This assumption idealizes the case where one of the transmitters has the ability

to sense the communication environment and smartly adapt to it. This channel could also model

scenarios where a lower priority user and a higher priority user coexist on the same channel.

For example, the low priority user would help the high priority user to transmit its message

in exchange for the opportunity to use the channel when the higher priority user vacates it.

This scenario arises in practical communication channels, especially wireless networks, when

considering devices with the capability of understanding the surrounding environment.

We investigate the capacity regions of such networks – the largest transmission rates that

may be achieved with arbitrarily low probability of error. To de so we derive outer bounds

to the maximum attainable transmission rates and propose transmission schemes to approach

these bounds. When it is possible prove that an outer bound may be achieved with a particular

transmission scheme, it is said that capacity has been determined. Capacity therefore quantifies

the maximum amount of information that can be conveyed reliably through the channel, and

acts as a benchmark for the performance evaluation of practical codes and and transmission

protocols.

We focus on two classes of channels: a) deterministic channels, and b) additive Gaussian

channels. In a deterministic channels the channel outputs are a deterministic function of the

input and no randomness is introduced by the channel. In additive Gaussian channels the

channel outputs are obtained as linear combinations of the channel inputs plus an additive

noise term. The channel inputs are subject to an average power constraint and the noise term

x



SUMMARY (Continued)

is a random variable with a Gaussian distribution. While additive Gaussian channels constitute

a relatively accurate model of a transmission channel, determining capacity of such channels is

at times a complicated task. Deterministic channels, on the other hand, are more simplistic,

but it is often easier to prove capacity under the deterministic channel assumption. This thesis’

contributions are as follows:

• We propose a new outer bound and a new achievable scheme for the cognitive interference

channel, improving on the previously known results.

• We derive a set of new capacity results, both in the deterministic and in the additive

Gaussian noise channel model.

• We provide important insights on the new capacity results and stress their implications

in the design of practical systems.

• When it not possible to prove exact capacity, we prove that our achievable rate regions

lie at a bounded distance from our outer bounds regardless of channel conditions, thereby

providing performance guarantees. This result can be thought of as an approximate

solution to the problem of determining the capacity of a channel and for this reason is

termed approximate capacity.

The rest of the thesis is structured as follows: Chapter 1 provides an introduction to the

study of wireless networks. Chapter 2 presents a cognitive interference channel with discrete

inputs and the deterministic cognitive interference channel. In Chapter 3 we study the additive

Gaussian cognitive interference channel. Chapter 4 concludes the thesis.

xi



CHAPTER 1

INTRODUCTION

Recent advancements in communication technology, particularly in wireless communica-

tions, has increased the availability of smart devices with enhanced communication and com-

putational capabilities. A large number of nowadays communication systems comprise devices

that are able to transmit and receive signals over a large spectrum and perform complex compu-

tational operations. The demand for high rate data services has also witnessed an exponential

increase: it has been reported that the mobile data traffic is doubling every nine months (see

(1)).

The frequency spectrum is a limited natural resource and currently the access to this trans-

mission media is regulated by governmental agencies. In the United States the Federal Commu-

nications Commission (FCC) has the jurisdiction over radio licensing. The current legislation

of the FCC assigns a considerable part of the frequency spectrum to different services in an

exclusive fashion. Similar regulations are adopted in most countries. The inefficiency of such a

strategy has become apparent when it was realized that the spectrum is under-utilized most of

the time (see (2))

A more efficient use of the spectrum has been advocating by many. It has been sug-

gested that cooperation among devices would be able to increase spectrum utilization (see (3)).

Cooperation can be obtained by having the devices in the network overhear the neighboring

transmission. The term cognitive radio is used to define this new generation of smart devices.

1
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The term cognition was initially coined by Mitola (4) who described it as:

The point in which wireless personal digital assistants (PDAs) and the related net-

works are sufficiently computationally intelligent about radio resources and related

computer-to-computer communications to detect user communications needs as a

function of use context, and to provide radio resources and wireless services most

appropriate to those needs.

Mitola’s original definition of cognitive radio is fairly broad and it envisions a fully reconfig-

urable wireless black-box that automatically changes its communication strategies in response

to network topology and user demands.

Different research communities have dealt with specifics aspects of this broad concept.

In the networking community, the research on cognitive radio considers devices that are able

to sense utilization of the spectrum at a network level and dynamically schedule their packet

transmissions based on the available resources.

The theoretical framework used is often game theoretical where cognition is modeled as the

knowledge at a node of the transmission strategies of the surrounding nodes and where the

game objective is the successfully transmission of packets (see (5; 6; 7)).

In the field of wireless communication, research focuses mainly on the opportunistic use of

the spectrum. Here cognitive devices continuously monitor the frequency spectrum and initiate

a transmission in the available frequency-time slots. The starting moment and the duration of a
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transmission are random and thus a device has to be able to quickly detect both the beginning

and the end of the transmission from neighboring user (see (8; 9; 10)).

For computer scientists the issue in cognitive devices is the design of an adaptable physical

layer that is able to implement different transmission modes depending an the channel state

and interference level at the different points of the spectrum (see (11; 12)).

This concept is an important paradigm also in military communications where cognition

allows reliable communication between entities in case of natural disaster (see (13)), when

communication links in the network fail randomly.

From an information theoretical prospective, the problem is to determine the capacity region

of cognitive channels, i.e. the set of rates that can be simultaneously sustained by all users in

the network with arbitrarily low probability of error .

The primary motivations of such study are two folded. Firstly, information theory provides

theoretical tools to measure the advantages in spectral efficiency when allowing cooperation

between users on a licensed frequency band. Secondly , it provides practical guidelines on

which strategies are able to approach the theoretical limits.

The first information theoretic model of a cognitive radio channel is due to Devroye, Mitran

and Tarok (14). In they seminal work in 2006, Devroye et al. proposed to model cognition

as follows. Two pairs of transmitter/receiver share a common communication channel, as in

the classical interference channel (15). In the classical interference channel, the two pairs are

uncoordinated and do not have knowledge of the messages the interfering transmitter/receiver

pair exchanges. In a cognitive channel, one of the transmitter (the cognitive one) has non-
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causal knowledge of the message sent by the transmitter (the primary one). The primary pair

is supposed to be licensed users, while the cognitive pair is assumed to be smart devices who

”profits” of the licensed spectrum without harming the legitimate/licensed users. This fairly

simple model captures the basic trade-offs involved in cognitive communications: the cognitive

user can use the knowledge of the primary user’s message to help its own receiver and/or to

cooperate with it. In exchange for this the cognitive user is allowed access the channel as long

as it does not interfere with the transmission of the primary user.

The the capacity of the classical (non cognitive) interference channel has been an open

problem for almost thirty years (see (16)), and much progress has been made in the last couple

of years (see (17)). Upper ((18)) and lower (19; 20; 21)

bounds for the (non cognitive) interference channel are available, but they do not coincide in

general. Similarly the capacity of the cognitive interference channel has been an open problem

since its introduction. Partial results for the capacity region were due to Marić, Goldsmith ,

Kramer , Shamai and Yates in (22; 23; 24; 25) , to Wu, Vishwanath, and Arapostathis (26),

and Jovich and Viswanath (27) . These results cover the special cases where either one or both

transmitter do not incur any rate penalty in decoding both messages (see (?)), or when it is

optimal for the primary receiver to treat the message from the cognitive transmitter as noise (

see (26)).

The largest known achievable region is probably the one proposed in (25). However, the

region derived in (25) cannot be directly compared with original scheme proposed in (14)

because of large number of variable involved in the computation of those achievable regions.
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The tightest outer bound was proposed in (25) and included the bounds of (26; 22) as special

cases.

Variations of the cognitive radio channel have been proposed. A setting where the cognitive

decoder is required to decode both messages but the message of the cognitive user has to be kept

secrete at the primary decoder was solved in (28). using an achievable scheme proposed in (29).

A setting where both decoders need to decode both messages, known as compound multiple

access channel, was solved in (24). An extension to the case where receivers and transmitters

have multiple antennas was studied in (30). For this MIMO cognitive channel the sum-rate

capacity and part of the capacity region was determined.

Unfortunately the combination of multiple transmitting strategy such as binning and su-

perposition coding in one transmission scheme introduces multiple parameters to be optimized.

This makes it difficult to compare inner and outer bounds. Probably the most general achiev-

able scheme available up to date is (25, Th. 1) the rate region is expressed by six equations to

be optimized over the distribution of six random variables.

In general the task of determining the assignments that could show capacity is a difficult

and time consuming. In the last couple of years a new, powerful alternative to this task has

arose for Gaussian channels. When the energy of the transmitter is far greater then amplitude

of the noise, the channel can be approximated by a deterministic channel, neglecting the effect

of the noise.

This consideration suggested an alternative to the task of determining the capacity region

of a multi user communication networks. Rather than proving an equality between inner and
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outer bounds, the authors (31) advocate a powerful new method for obtaining achievable rate

regions that lie within a constant number of bits from capacity region outer bounds, thereby

determining the capacity region to “within a constant number of bits”. This constant gap is

independent in the channel parameters. In a series of papers, and inspired by (32), Avestimehr

and Tse introduced the linear deterministic approximation of wireless networks (33; 34; 35).

A linear deterministic network approximates a linear Gaussian network at high SNR by

capturing the dynamic range of the desired and interference signals, but neglecting additive

noise. At high SNR, this is a valid approximation, and is able to effectively separate the role

of interference and noise in a wireless network, allowing one to focus on the signal interaction.

The linear model is often easier to analyze (capacity can often be determined exactly), and

insights gained from it may be used to guide coding schemes for inner bounds and receiver

side-information in outer bounds for the practically motivated Gaussian noise channel, which

are then ideally shown to lie within a constant gap from each other. Proving a constant gap

result is in general easier then proving capacity, but yields similar insight on the strategies that

perform well in practical applications. The approach has allowed, for example, to solve within

a constant gap the capacity regions of channels that have been long standing open problems,

such as Gaussian interference channels (36; 17) and Gaussian relay channels (37).

Determining the capacity for a channel is crucial to understand what is the nature of the

communication strategy that can efficiently guarantee reliable transmissions.

When capacity is known it is possible measure of the distance between capacity and the

rate achieved by a given code. In proving capacity a theoretical code with infinite block-length
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is constructed and shown reliable. This passage gives an insight on the nature of a practical

code that performs well over the channel. When considering channel with only one message set,

this constrictive part of the prove guides in designing how the message is handled. When there

are more then two messages and interaction between encoders, this actually indicate which

forms of collaboration between encoders perform the best. Such a result, therefore, not only

is of interest in the code design, but also in the networking part. Unfortunately determining

capacity is a arduous task may require several years to be solved. An constant gap result is a

very promising alternative to this task that provide just the same insight on policies at physical

and network layer alike.

This is particularly important when considering networks with a multiple numbers of re-

ceivers and transmitters. Given that the capacity of that two transmitter/receiver pair cognitive

channel is still open, it comes to no surprise that very few results are available for more than

two pairs.

Some results are available for an deterministic interference channel with three transmitters

and receivers in (38) and for particular topologies of the general case (see (39)). also, in (40) the

maximum sum rate of a multiple access channel with cognition is determined. For the general

multiuser setting some results are available for the relay channel with one transmitter and one

receiver and k relays in (35) where a constant gap result is proven where the gap is a function

of the number of relays in the network. The sum capacity is known for the Gaussian vector

broadcasts channel: this result was proved in (41). Scaling laws for cognitive networks where
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determined in (42) and (43). In general cognitive network are still an open field of research

given the general complexity of the transmission scheme to be employed.

The main research objective for general networks is to understand the scaling of the achiev-

able rates in a cognition network in the number of user. This line of research is studied in (44)

and (45) where some preliminary results are derived.
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1.1 Notation

We use the following convention:

• The symbol XN indicates a vector of size N . The symbol Xj
i indicates the subset of the

original vector between the index i and the index j.

• The symbol X ∼ NC(µ, σ2) indicates that the random variable (RV) X is a complex-

valued proper Gaussian RV with mean µ and covariance σ2.

• We define C(x) := log(1 + x) for x ∈ R+.

• We define x := 1 − x for x ∈ [0, 1].

• For any two RVs X and Y , the symbol X|Y denotes the conditional distribution of X

given Y .

• We use [1 : n] to denote the set of natural numbers from 1 to n.

• The notation A
(n)
= B to indicate that the expression B is obtained from A with the

assignment given in equation number n.

• For an integer N , the symbol XN indicates the length-N vector (X1, ..., XN ).

• For the plots, the logarithms are in base 2, i.e., rates are expressed in bits/s/Hz.

• C(a, |b|, P1, P2) indicates the capacity of a Gaussian cognitive interference channel with

channel parameters a and |b| and powers P1 and P2.

• X∗ denotes the complex conjugate of the complex number (or vector) X.



CHAPTER 2

THE DISCRETE MEMORYLESS COGNITIVE INTERFERENCE

CHANNEL

The content of this chapter appears in the Proceedings of ITW2009 in Taormina,

IZS2010, ICC2011 and is submitted to the IEEE Transaction of Information The-

ory

2.1 Main contributions

In this chapter we establish a series of new results for the discrete memoryless cognitive

interference channel.

1. We derive a new outer bound to the capacity region of the discrete memoryless cognitive

interference channel. This outer bound is looser than previously derived outer bounds

but it does not include auxiliary random variables and thus it can be evaluated for given

channels. The outer bound is derived using an idea originally introduced by Sato for the

broadcast channel.

2. We present a new inner bound that encompasses all known achievable regions. This

inner bound is shown to include all the previously presented regions and provides new

and interesting features.

10
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3. We show capacity in the “better cognitive decoding” regime This regime includes the

“very weak interference” and the “very strong interference” regimes and is thus the largest

set of channels for which capacity is known.

4. We determine capacity for the semi-deterministic cognitive interference channel. In this

particular channel model the output at the cognitive receiver is a deterministic function

of the channel inputs. We determine capacity for this channel model by showing the

achievability of a the outer bound in (26).

2.2 Organization

The rest of the chapter is organized as follows. Section 2.3 introduces the basic definitions

and notation. Section 2.4 summarizes the all the known results for the discrete memoryless

cognitive interference channel. The new outer bound is presented in Section 3.5. In Section 3.6

we present the new inner bound. We show the inclusion in the previously presented regions in

Section 2.7. We show capacity in the “better cognitive decoding” regime in Section 2.8. Section

2.9 focuses on the semi-deterministic cognitive interference channel. In Section 2.10 we consider

the deterministic cognitive interference channel. The chapter concludes with some examples in

Section 2.11 which provide insight on the role of cognition.

2.3 Channel model, notation and definitions

A two user InterFerence Channel (IFC) is a multi-terminal network with two senders and

two receivers. Each transmitter i wishes to communicate a message Wi to receiver i , i = {1, 2}.

In the classical IFC the two transmitters operate independently having no knowledge of each
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others messages. Here we consider a variation of this set up assuming that transmitter 1

(also called cognitive transmitter) in addition to its own message, W1, also knows the message

W2 of transmitter 2 (also called primary transmitter). We refer to transmitter/receiver 1 as

the cognitive pair and to transmitter/receiver 2 as the primary pair This model is commonly

known as Cognitive InterFerence Channel (CIFC) and it is an idealized model for the unilateral

cooperation at the encoder side. A graphical representation of this model can be seen in

Figure 6.

A Discrete Memoryless CIFC (DM-CIFC) is a CIFC with finite cardinality input and output

alphabets. The channel is memoryless with transition probability pY1,Y2|X1,X2
(x1, x2).

Transmitter i = {1, 2} wishes to communicate a message Wi uniformly distributed on

[1, . . . , 2NRi ] to receiver i in N channel uses at rate Ri. The two messages are independent.

Transmitter 1 knows both messages and transmitter 2 knows only W2. A rate pair (R1, R2) is

achievable if there exists a sequence of encoding functions

XN
1 = XN

1 (W1,W2)

XN
2 = XN

2 (W2),

and a sequence of decoding functions

Ŵi = Ŵ1(Y N
i ), i = {1, 2}
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Figure 1. The CIFC model.

such that

lim
N→∞

max
i={1,2}

P
[
Ŵi ̸= Wi

]
→ 0.

The capacity region is defined as the closure of the region of all achievable (R1, R2) pairs (46).

2.4 Available results for the DM-CIFC

We now present the outer bounds and the capacity results available for the DM-CIFC. The

first outer bound for the CIFC was obtained in (26, Thm 3.2) by the introduction of an auxiliary

Random Variable (RV).
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Theorem 2.4.1. One auxiliary RV outer bound of (26, Thm 3.2):

R1 ≤ I(X1; Y1|X2) (2.1a)

R2 ≤ I(X2, U ; Y2) (2.1b)

R1 + R2 ≤ I(X2, U ; Y2) + I(X1; Y1|X2, U), (2.1c)

union over the distributions that factors as

pU,X1,X2pY1,Y2|X1,X2
.

Another general outer bound for the capacity region of the CIFC is provided in (25, Thm

4). This outer bound is derived using an argument originally devised in (47) for the Broadcast

Channel (BC). The expression of the outer bound is identical to the outer bound in (47) but

for the factorization of the auxiliary RV’s differs.

Theorem 2.4.2. BC inspired outer bound of (25, Thm. 4 ):

R1 ≤ I(V,U1; Y1) (2.2a)

R2 ≤ I(V,U2; Y2) (2.2b)

R1 + R2 ≤ I(V,U1; Y1) + I(U2; Y2|U1, V ) (2.2c)

R1 + R2 ≤ I(V,U2; Y2) + I(U1; Y1|U2, V ), (2.2d)
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union over the distribution that factors as

pU1pU2pV |U1,U2
pX2|U2,V pX1|U1,U2,V pY1,Y2|X1,X2

.

It is not possible to show in general the containment of the outer bound of Theorem

2.4.1,“one auxiliary RV outer bound”, into the region of Theorem 2.4.2, “BC inspired outer

bound”.

The expression of the outer bound of Theorem 2.4.1,“one auxiliary RV outer bound”, can

be simplified in two instances called weak and strong interference.

Corollary 2.4.3. Weak interference outer bound of (26, Thm 3.4):

When the condition

I(U ; Y2|X2) ≤ I(U ; Y1|X2) ∀pU,X1,X2 , (2.3)

is verified, the outer bound of Theorem 2.4.1 ,“one auxiliary RV outer bound”, can be equiva-

lently expressed as

R1 ≤ I(Y1; X1|U,X2) (2.4a)

R2 ≤ I(U,X2; Y2), (2.4b)

union over all distributions pU,X1,X2.
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We refer to the condition in Equation 3.2 as “weak interference condition”.

Corollary 2.4.4. Strong interference outer bound of (20, Thm 5):

When the condition

I(X1; Y1|X2) ≤ I(X1; Y2|X2) ∀pX1,X2x, (2.5)

is verified, the outer bound of Theorem 2.4.1 ,“one auxiliary RV outer bound”, can be equiva-

lently expressed as

R1 ≤ I(Y1; X1|X2) (2.6a)

R1 + R2 ≤ I(Y2; X1, X2) (2.6b)

union over all distributions pX1,X2.

We refer to the condition in Equation 3.4 as “strong interference condition”.

The outer bound of Theorem 2.4.1 ,“one auxiliary RV outer bound”, can be shown to be

achievable in a subset of the “weak interference” Equation 3.2 and of the “strong interference”

Equation 3.4 conditions. We refer to such subsets as “very strong interference” and “very weak

interference” regimes.

Theorem 2.4.5. Very weak interference capacity of (26, Thm. 3.4) and (27, Thm. 4.1).
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The outer bound of Corollary 2.4.3, “weak interference outer bound”, is the capacity region

if the following holds

I(U ; Y2|X2) ≤ I(U ; Y1|X2)

I(X2; Y2) ≤ I(X2; Y1), ∀pU,X1,X2 . (2.7)

We refer to the condition in Equation 2.7 as “very weak interference”. In this regime capacity

is achieved by having encoder 2 transmitting as in a point-to-point channel and encoder 1

performing Gelf‘and-Pinsker binning against the interference created by transmitter 2.

Theorem 2.4.6. Very strong interference capacity of (20, Thm. 5). The outer bound of

Corollary 3.4.2, “strong interference outer bound”, is the capacity region if the following holds

I(X1; Y1|X2) ≤ I(X1; Y2|X2)

I(Y2; X1, X2) ≤ I(Y1; X1, X2), ∀pX1,X2 . (2.8)

We refer to the condition in Equation 3.6 as “very strong interference”. In this regime,

capacity is achieved by having both receivers decoding both messages.

The outer bounds presented in Theorem 2.4.1, “one auxiliary RV outer bound” and 2.4.2 ,

“BC inspired outer bound”, cannot be evaluated in general since they include auxiliary RV’s
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whose cardinality has yet not being bounded. In the following we propose a now outer bound,

looser in general that the outer bound of Theorem 2.4.1 without auxiliary RV’s. This bound is

looser than the outer bound of Theorem 2.4.1,“one auxiliary RV outer bound”, in the general

case, but it is tight is the “very strong interference” regime.

2.5 A new outer bound

Theorem 2.5.1. The capacity region of the CIFC is contained into the set

R1 ≤ I(Y1; X1|X2), (2.9a)

R2 ≤ I(X1, X2; Y2), (2.9b)

R1 + R2 ≤ I(X1, X2; Y2) + I(Y1; X1|Y ′
2 , X2), (2.9c)

union over all distributions pX1,X2 where Y ′
2 has the same marginal distribution of Y2, i.e.,

pY ′
2 |X1,X2

= pY2|X1,X2
, but otherwise any joint distribution pY1,Y ′

2 |X1,X2
.

The idea behind this outer bound is to exploit the fact that the capacity region only depends

on the marginal distributions PY1|X1,X2
and PY2|X1,X2

because the receivers do not cooperate.
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Proof. By Fano‘s inequality we have that H(Wi|Y N
i ) ≤ NϵN , for some ϵN such that ϵN → 0 as

N → 0 for i ∈ {1, 2}. The rate of user 1 can be bounded as

N(R1 − ϵN ) ≤ I(W1; Y N
1 )

≤ I(W1; Y N
1 |W2)

= I(W1, X
N
1 (W1,W2); Y N

1 |W2, X
N
2 (W2))

≤ H(Y N
1 |W2, X

N
2 ) − H(Y N

1 |W2,W1, X
N
1 , XN

2 )

≤ H(Y N
1 |XN

2 ) − H(Y N
1 |W2,W1, X

N
1 , XN

2 )

= H(Y N
1 |XN

2 ) − H(Y N
1 |XN

1 , XN
2 )

=
N∑

i=1

H(Y1i|XN
2 , (Y1)i−1

1 ) − H(Y1i|XN
2 , XN

2 , (Y1)i−1
1 )

≤
N∑

i=1

H(Y1i|X2i) − H(Y N
1 |X1i, X2i)

= NI(Y1T ; X1T |X2T , T )

= N(H(Y1T |X2T , T ) − H(Y1T |X1T , X2T , T ))

= N(H(Y1T |X2T , T ) − H(Y1T |X1T , X2T ))

≤ N(H(Y1T |X2T ) − H(Y1T |X1T , X2T ))

≤ I(Y1T ; X1T |X2T ), (2.10a)

where T is the time sharing RV, informally distributed over the set {1...N}.
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The rate of user 2 can be bounded as

N(R2 − ϵN ) ≤ I(Y N
2 ;W2)

≤ I(Y N
2 ;W2,W1)

= H(Y N
2 ) − H(Y N

2 |W1,W2, X
N
2 (W2), XN

1 (W1,W2))

= H(Y N
2 ) − H(Y N

2 |XN
2 , XN

1 )

=
N∑

i=1

H(Y2i|(Y2)i−1
1 ) − H(Y2i|XN

1 , XN
2 , (Y2)i−1

1 )

≤
N∑

i=1

H(Y2i) − H(Y2i|X1i, X2i)

≤ NI(Y2T ;X1T , X2T |T )

= N(H(Y2T |T ) − H(Y2T |X1T , X2T , T ))

≤ N(H(Y2T ) − H(Y2T |X1T , X2T ))

≤ I(Y2T ; X1T , X2T ). (2.10b)
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Next let Y ′
2 be any RV such that PY ′

2 |X1,X2
= PY2|X1,X2

but with any joint distribution

PY1,Y ′
2 |X1,X2

. The sum-rate can then be bounded as

N(R1 + R2 − 2NϵN ) ≤ I(W1; Y1) + I(W2;Y2)

≤ I(W1; Y N
1 |W2) + I(W2; Y N

2 )

≤ I(W1; Y N
1 , Y ′N

2 |W2) + I(W2; Y N
2 )

= I(W2; Y N
2 ) + I(W1;Y ′N

2 |W2) + I(W1; Y N
1 |Y ′N

2 ,W2)

= H(Y N
2 ) +

(
− H(Y N

2 |W2) + H(Y ′N
2 |W2)

)
− H(Y ′N

2 |W1,W2) + H(Y N
1 |Y ′N

2 ,W2) − H(Y N
1 |Y ′N

2 ,W1,W2)

= H(Y N
2 ) + H(Y N

1 |W2, X
N
2 , Y ′N

2 )

− H(Y ′N
2 |W1,W2, X

N
1 , XN

2 ) − H(Y N
1 |Y ′N

2 ,W1,W2, X
N
1 , XN

2 )

= H(Y N
2 ) + H(Y N

1 |W2, X
N
2 , Y ′N

2 )

− H(Y N
2 |XN

1 , XN
2 ) − H(Y N

1 |Y ′N
2 , XN

1 , XN
2 )

≤ H(Y N
2 ) + H(Y N

1 |XN
2 , Y ′N

2 )

− H(Y N
2 |XN

1 , XN
2 ) − H(Y N

1 |Y ′N
2 , XN

1 , XN
2 )

≤ I(Y N
2 ; XN

1 , XN
2 ) +

N∑
i=1

H(Y1i|XN
2 , Y ′N

2 , (Y1)i−1
1 ) − H(Y1i|XN

1 , XN
2 , Y ′N

2 , (Y1)i−1
1 )

≤ I(Y N
2 ; XN

1 , XN
2 ) +

N∑
i=1

H(Y1i|X2i, Y
′
2i) − H(Y1i|X1i, X2i, Y

′
2i)

≤ I(Y N
2 ; XN

1 , XN
2 ) +

N∑
i=1

H(Y1i|X2i, Y
′
2i) − H(Y1i|X1i, X2i, Y

′
2i)

= N
(
I(Y2T ;X1T , X2T ) + H(Y1T |X2T , Y ′

2T , T ) − H(Y1T |X1T , X2T , Y ′
2T )
)

≤ N
(
I(Y2T ;X1T , X2T ) + I(Y1T ; X1T |X2T , Y ′

2T )
)
. (2.10c)
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Remark 2.5.2. The outer bound of Theorem 2.5.1 contains the outer bound of Theorem 2.4.1,“one

auxiliary RV outer bound”,. Indeed, for a fixed distribution pX1,X2 Equation 2.1a = Equation 2.9a

and Equation 2.1b ≤ Equation 2.9b since

Equation 2.1b = I(Y2; X2, U)

(a)

≤ I(Y2; X2, U) + I(Y2; X1|U,X2)

= I(Y2; X1, X2, U)

= I(Y2; X1, X2) = Equation 2.9b,

where the last equality follows from the Markov chain U − X1, X2 − Y1, Y2.

Consider Y ′
2 such that pY ′

2 |U,X1,X2
= pY2|U,X1,X2

, which also implies pY ′
2 |U,X2

= pY2|U,X2
since

pY ′
2 |U,X2

= 1
pX1

∫
|Y ′

2 |
pY ′

2 |U,X1,X2
pU,X1,X2dX1

= 1
pX1

∫
|Y2|

pY2|U,X1,X2
pU,X1,X2dX1

= pY2|U,X2
,
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then:

Equation 2.1c = I(Y2; X2, U) + I(X1; Y1|U,X2)

= H(Y2) + H(Y2|X1, X2, U) − H(Y2|U,X1, X2) − H(Y2|U,X2) + I(X1; Y1|U,X2)

= I(Y2; X1, X2, U) + H(Y ′
2 |U,X1, X2) − H(Y ′

2 |U,X2) + I(X1;Y1|U,X2)

≤ I(Y2; X1, X2) − I(Y ′
2 ; X1|U,X2) + I(X1;Y1|U,X2) + I(Y ′

2 ; Y1|U,X1, X2)

= I(Y2; X1, X2) − I(Y ′
2 ; X1|U,X2) + I(Y ′

2 , X1; Y1|U,X2)

= I(Y2; X1, X2) + I(Y1;X1|Y ′
2 , U,X2)

= I(Y2; X1, X2) + H(Y1|Y ′
2 , U,X2) − H(Y1|Y ′

2 , U,X1, X2)

(b)

≤ I(Y2; X1, X2) + H(Y1|Y ′
2 , X2) − H(Y1|Y ′

2 , X1, X2)

= I(Y2; X1, X2) + I(Y1;X1|Y ′
2 , X2) = Equation 2.9c.

Now the RV U does not appear in the outer bound expression Equation 2.9c and thus we can

consider simply the RV’s with p
Ỹ2|X1,X2

= pY2|X1,X2
which corresponds to the definition of Y ′

2

in Theorem Equation 2.9.

Equality of the outer bounds is verified when conditions (a) and (b) hold: with equality,

that is when

I(Y2; X1|U,X2) = 0

I(Y1; X1|Ỹ2, U,X2) = I(Y1; X1|Ỹ2, X2) ∀pU ,

and a given Ỹ2. The first conditions implies the MC

Y2 − U,X2 − X1
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and the second condition the MC

Y1, X1 − Ỹ2X2 − U

We currently cannot relate these conditions to any specific class of DM-CIFC or provide an

intuition on their role in the outer bound expression.

Remark 2.5.3. The outer bound of Theorem 2.5.1 reduces to the strong interference outer bound

in Equation 3.5, in fact

I(Y1; X1|X2) ≤ I(Y2;X1|X2) ∀pX1,X2

implies

I(Y1; X1|Y ′
2 , X2) ≤ I(Y2; X1|Y ′

2 , X2) ∀pX1,X2,Y ′
2

Now let Y ′
2 = Y2 to obtain that I(Y1; X1|Y2, X2) = 0 yielding Equation 2.9c = Equation 2.9b

so that the two outer bounds coincide.

2.6 A new inner bound

As the DM-CIFC encompasses classical interference, multiple-access and broadcast channels,

we expect to see a combination of their achievability proving techniques surface in any unified

scheme for the CIFC:

• Rate-splitting. As in Han and Kobayashi (18) for the interference-channel and in the DM-

CIFC regions of (25; 14; 29), rate-splitting is not necessary in the very weak (26) and very
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strong (22) interference regimes of Equation 2.7 and Equation 3.6.

• Superposition-coding. Useful in multiple-access and broadcast channels (46), in the CIFC the

superposition of private messages on top of common ones proposed in (25; 29) and is known to

be capacity achieving in very strong interference (22).

• Binning. Gel’fand-Pinsker coding (48), often simply referred to as binning, allows a transmit-

ter to “cancel” (portions of) the interference known to be experienced at a receiver. Binning is

also used by Marton in deriving the largest known channel achievable rate region (49) for the

broadcast channel.

We now present a new achievable region for the DM-CIFC which generalizes all the known

achievable rate regions presented in (25; 26; 29; 14; 50) and (51).

Theorem 2.6.1. The RRTD region Region RRTD. A rate pair (R1, R2) such that

R1 = R1c + R1pb,

R2 = R2c + R2pa + R2pb. (2.11)
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is achievable for a general DM-CIFC if (R′
1c, R

′
1pb, R

′
2pb, R1c, R1pb, R2c, R2pa, R2pb) ∈ R8

+ satis-

fies:

R′
1c = I(U1c; X2|U2c) (2.12a)

R′
1c + R′

1pb ≥ I(U1pb; X2|U1c, U2c)

+I(U1c; X2|U2c) (2.12b)

R′
1c + R′

1pb + R′
2pb ≥ I(U1pb; X2, U2pb|U1c, U2c)

+I(U1c; X2|U2c) (2.12c)

R2c + R2pa + (R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c, X2, U2c)

+I(U1c; X2|U2c) (2.12d)

R2pa + (R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c, X2|U2c)

+I(U1c; X2|U2c) (2.12e)

R2pa + (R2pb + R′
2pb) ≤ I(Y2; U2pb, X2|U1c, U2c)

+I(U1c; X2|U2c) (2.12f)

(R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c|X2, U2c)

+I(U1c; X2|U2c) (2.12g)

(R2pb + R′
2pb) ≤ I(Y2; U2pb|U1c, X2, U2c) (2.12h)

R2c + (R1c + R′
1c) + (R1pb + R′

1pb) ≤ I(Y1; U1pb, U1c, U2c), (2.12i)

(R1c + R′
1c) + (R1pb + R′

1pb) ≤ I(Y1; U1pb, U1c|U2c), (2.12j)

(R1pb + R′
1pb) ≤ I(Y1; U1pb|U1c, U2c), (2.12k)
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for some input distribution

pY1,Y2,X1,X2,U1c,U2c,U2pa,U1pb,U2pb
= pU1c,U2c,U2pa,U1pb,U2pb,X1,X2pY1,Y2|X1,X2

.

Remark 2.6.2. Moreover:

• Equation 3.36d can be dropped when R2c = R2pa = R2pb = R′
2pb = 0;

• Equation 3.36e can be dropped when R2pa = R2pb = R′
2pb = 0;

• Equation 3.36g can be dropped when R2pb = R′
2pb = 0;

• Equation 3.36i can be dropped when R1c = R′
1c = R1pb = R′

1pb = 0,

since they correspond to the event that a common message from the non intended user is

incorrectly decoded. This event is not an error event if no other intended message is incorrectly

decoded.

Proof. The meaning of the RV’s in Theorem 2.6.1 is as follows. Both transmitters perform

superposition of two codewords: a common one (to be decoded at both decoders) and a private

one (to be decoded at the intended decoder only). In particular:

• Rate R1 is split into R1c and R1pb and conveyed through the RV’s U1c and U1pb, respec-

tively.

• Rate R2 is split into R2c, R2pa and R2pb and conveyed through the RV’s U2c, X2 and U2pb,

respectively.

• U2c is the common message of transmitter 2. The subscript “c” stands for “common”.
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• X2 is the private message of transmitter 2 to be sent by transmitter 2 only. It superim-

posed to U2c. The subscript “p” stands for “private” and the subscript “a” stands for

“alone”.

• U1c is the common message of transmitter 1. It is superimposed to U2c and–conditioned

on U2c–is binned against X2.

• U1pb and U2pb are the private messages of transmitter 1 and transmitter 2, respectively,

and are sent by transmitter 1 only. They are binned against one another conditioned

on U2c, as in Marton’s achievable region for broadcast channels (49). The subscript “b”

stands for “broadcast”.

• X1 is finally superimposed to all the previous RV’s and transmitted over the channel.

A graphical representation of the encoding scheme of Theorem 2.6.1 can be found in Figure 2.

The formal description of the proposed encoding scheme is as follows:

2.6.1 Rate splitting

Let W1 and W2 be two independent RV’s uniformly distributed on [1...2NR1 ] and [1...2NR2 ]

respectively. Consider splitting the messages as follows:

W1 = (W1c,W1pb),

W2 = (W2c,W2pb,W2pa),
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pX2|U2c X2

X1
pX1|U2c,X2,U1c,U1pbpU2pb|U1c,U2c,X2

Figure 2. The achievable encoding scheme of Thm. 2.6.1. The ordering from left to right and
the distributions demonstrate the codebook generation process. The dotted lines indicate
binning. We see rate splits are used at both users, private messages W1pb,W2pa,W2pb are

superimposed on common messages W1c,W2c and U1c, is binned against (U2pa, X2)
conditioned on U2c, while U1pb and U2pb are binned against each and X2 other in a Marton-like

fashion (conditioned on other subsets of RV’s). U1pb is binned against U2pa as well.

where the messages Wi, i ∈ {1c, 2c, 1pb, 2pb, 2pa}, are all independent and uniformly distributed

on [1...2NRi ], so that the rate are

R1 = R1c + R1pb,

R2 = R2c + R2pa + R2pb.

as specified in Equation 3.35b.

2.6.2 Codebook generation

Consider a distribution pU1c,U2c,X2,U1pb,U1pb,X1,X2 . The codebooks are generated as follows:

• Select uniformly at random 2NR2c length-N sequences UN
2c (w2c), w2c ∈ [1...2NR2c ], from

the typical set TN
ϵ (pU2c).
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• for every w2c ∈ [1...2NR2c ], select uniformly at random 2NR2pa length-N sequences XN
2 (w2c, w2pa),

w2pa ∈ [1...2NR2pa ], from the typical set TN
ϵ (pX2,U2c |UN

2c (w2c)).

• for every w2c ∈ [1...2NR2c ], select uniformly at random 2N(R1c+R′
1c) length-N sequences

UN
1c (w2c, w1c, b0), w1c ∈ [1...2NR1c ] and b0 ∈ [1...2NR′

1c ], from the typical set TN
ϵ (pU1cU2c |UN

2c (w2c))

• for every w2c ∈ [1...2NR2c ], w2pa ∈ [1...2NR2pa ], w1c ∈ [1...2NR1c ] and b0 ∈ [1...2NR′
1c ], select

uniformly at random 2N(R2pb+R′
2pb) length-N sequences UN

2pb(w2c, w2pa, w1c, b0, w2pb, b2),

w2pb ∈ [1...2NR2pb ] and b2 ∈ [1...2NR′
2pb ], from the typical set

TN
ϵ (pU2pb,U2c,U1c,X2 |UN

2c (w2c), XN
2 (w2c, w2pa), UN

1c (w2c, w1c, b0)).

• for every w2c ∈ [1...2NR2c ], w1c ∈ [1...2NR1c ] and b0 ∈ [1...2NR′
1c ], select uniformly at

random 2N(R1pb+R′
1pb) length-N sequences UN

1pb(w2c, w1c, b0, w1pb, b1), w1pb ∈ [1...2NR1pb ]

and b1 ∈ [1...2NR′
1pb ], from the typical set TN

ϵ (pU1pb,U2c,U1c |UN
2c (w2c), UN

1c (w2c, w1c, b0)).

• for every w2c ∈ [1...2NR2c ], w2pa ∈ [1...2NR2pa ], w1c ∈ [1...2NR1c ], b0 ∈ [1 : 2NR′
1c ], w1pb ∈

[1...2NR1pb ], b1 ∈ [1 : 2NR′
1pb ], w2pb ∈ [1...2NR2pb ], b2 ∈ [1 : 2NR′

2pb ], let the channel input

XN
1 (w2pa, w2c, w1c, b0, w1pb, b1, w2pb, b2) be any length-N sequence from the typical set

TN
ϵ (pX1,U2c,U1c,X2,U2pb,U1pb

|UN
2c (w2c), XN

2 (w2c, w2pa), UN
1c (w2c, w1c, b0),

UN
2pb(w2c, w2pa, w1c, b0, w2pb, b2), UN

1pb(w2c, w1c, b0, w1pb, b1)).

2.6.3 Encoding

Given the message w2 = (w2c, w2pb, w2pa), encoder 2 sends the codeword XN
2 (w2c, w2pa).
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Given the message w2 = (w2c, w2pb, w2pa) and the message w1 = (w1c, w1pb), encoder 1 looks

for a triplet (b0, b1, b2) such that:

(UN
2c (w2c), XN

2 (w2c, w2pa), UN
1c (w2c, w1c, b0), UN

1pb(w2c, w1c, b0, w1pb, b1), UN
2pb(w2c, w1c, b0, w2pb, b2))

∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

).

If not such a triplet exists, it sets (b0, b1, b2) = (1, 1, 1). If more than one such a triplet exists,

it picks one uniformly at random from the found ones. For the selected (b0, b1, b2), encoder 1

sends XN
1 (w2pa, w2c, w1c, b0, w1pb, b1, w2pb, b2).

Since the codebooks are generated iid according to

p(codebook) = pU2c pX2|U2c
pU1c|U2c

pU2pb|U2c,U1c,X2
pU1pb|U2c,U1c

(2.13)

but the encoding forces the actual transmitted codewords to look as if they were generated iid

according to

p(encoding) = pU2c pX2|U2c
pU1c|U2c,X2

pU2pb|U2c,U1c,X2
pU1pb|U2c,U1c,X2,U2pb

, (2.14)

We expect the probability of encoding error to depends on

E

[
p(encoding)

p(codebook)

]
= E

[
pU1c|U2c,X2

pU1pb|U2c,U1c,X2,U2pb

pU1c|U2c
pU1pb|U2c,U1c

]
= I(U1c; X2|U2c)+I(U1pb;X2, U2pb|U2c, U1c).
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2.6.4 Decoding

Decoder 2 looks for a unique tuple (w2c, w2pa, w2pb) and some (w1c, b0, b2) such that

(Un
2c(w2c), Xn

2 (w2c, w2pa), Un
1c(w2c, w1c, b0), Un

2pb(w2c, w1c, b0, w2pb, b2), Y n
2 ) ∈ Tn

ϵ (pU2c,X2,U1c,U2pb,Y2).

Depending on which messages are wrongly decoded at decoder 2, the transmitted sequences

and the received Y n
2 are generated iid according to

p2|⋆ = pU2c pX2|U2c
pU1c|U2c

pU2pb|U2c,U1c,X2
pY2|⋆, (2.15)

where “⋆” indicates the messages decoded correctly. However, the actual transmitted sequences

and the received Y n
2 considered at decoder 2 look as if they were generated iid according to

p2 = pU2c pX2|U2c
pU1c|U2c,X2

pU2pb|U2c,U1c,X2
pY2|U2c,U1c,X2,U2pb

. (2.16)

Hence we expect the probability of error at decoder 2 to depend on terms of the type

I2|⋆ = E

[
log

p2

p2|⋆

]
= E

[
log

pU1c|U2c,X2
pY2|U2c,U1c,X2,U2pb

pU1c|U2c
pY2|⋆

]
= I(U1c; X2|U2c) + I(Y2; U2c, U1c, X2, U2pb|⋆).

(2.17)

Decoder 1 looks for a unique pair (w1c, w1pb) and some (w2c, b0, b1) such that

(Un
2c(w2c), Un

1c(w2c, w1c, b0), Un
1pb(w2c, w1c, b0, w1pb, b1), Y n

1 ) ∈ Tn
ϵ (pU2c,U1c,U1pb,Y1).
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Depending on which messages are wrongly decoded at decoder 1, the transmitted sequences

and the received Y n
1 are generated iid according to

p1|⋆ = pU2c pU1c|U2c
pU1pb|U2c,U1c

pY1|⋆, (2.18)

where “⋆” indicates the messages decoded correctly. However, the actual transmitted sequences

and the received Y n
1 considered at decoder 1 look as if they were generated iid according to

p1 = pU2c pU1c|U2c
pU1pb|U2c,U1c

pY1|U2c,U1c,U1pb
. (2.19)

Hence we expect the probability of error at decoder 1 to depend on terms of the type

I1|⋆ = E

[
log

p1

p1|⋆

]
= E

[
log

pY1|U2c,U1c,U1pb

pY1|⋆

]
= I(Y1; U2c, U1c, U1pb|⋆). (2.20)

2.6.5 Error analysis

Without loss of generality assume that the message (w1c, w2c, w2pa, w1pb, w2pb) = (1, 1, 1, 1, 1)

was sent and let (b0, b1, b2) be the tuple (b0, b1, b2) chosen at encoder 1. Let (ŵ1c, ŵ2c, ŵ2pa, ŵ2pb, b̂0, b̂2)

be the estimate at the decoder 2 and ( ̂̂w1c, ̂̂w2c, ̂̂w1pb,
ˆ̂
b0,

ˆ̂
b1) be the estimate at the decoder 1.

The probability of error at decoder u, u ∈ {1, 2}, is bounded by

P [error u] ≤ P [error u|encoding successful] + P [encoding NOT successful].
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An encoding error occurs if encoder 1 is not able to find a tuple (b0, b1, b2) that guarantees

typicality. A decoding error is committed at decoder 1 when ( ̂̂w1c, ̂̂w1pb) ̸= (1, 1). A decoding

error is committed at decoder 2 when (ŵ2c, ŵ2pa, ŵ2pb) ̸= (1, 1, 1).

2.6.6 Encoding Error

The probability that the encoding fails can be bounded as:

P [encoding NOT successful] = P

[∩2NR′
1c

b0=1

∩2
NR′

1pb

b1=1

∩2
NR′

2pb

b2=1(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

2pb(1, 1, b0, 1, b2)
)

/∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)
]

= P [K = 0] ≤ Var[K]
E2[K]

where

K =
2NR′

1c∑
b0=1

2
NR′

1pb∑
b1=1

2
NR′

2pb∑
b2=1

Kb0,b1,b2

and

Kb0,b1,b2 = 1{(UN
2c(1),XN

2 (1,1),UN
1c(1,1,b0),UN

1pb(1,1,b0,1,b1),UN
2pb(1,1,b0,1,b2))∈T N

ϵ (pU2c,X2,U1c,U1pb,U2pb
)
},

where 1{x∈A} = 1 if x ∈ A and zero otherwise.

The mean value of K (neglecting all terms that depend on ϵ and that eventually go to zero)

is:

E[K] =
2NR′

1c∑
b0=1

2
NR′

1pb∑
b1=1

2
NR′

2pb∑
b2=1

P [Kb0,b1,b2 = 1] = 2N(R′
1c+R′

1pb+R′
2pb−A)
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with

2−NA = P [Kb0,b1,b2 = 1] = E[Kb0,b1,b2 ]

= P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

2pb(1, 1, b0, 1, b2)
)
∈ TN

ϵ (pU2c,X2,U1c,U1pb,U2pb
)]

=
∑

(uN
1c,uN

1pb,u
N
2pb)∈T N

ϵ (pU2c,X2,U1c,U1pb,U2pb
|uN

2c,xN
2 )

pU1c|U2c
pU2pb|U2c,U1c,X2

pU1pb|U2c,U1c

≥ 2−N [I(U1c;X2|U2c)+I(U1pb;X2,U2pb|U1c,U2c)].

The variance of K (neglecting all terms that depend on ϵ and that eventually go to zero) is:

Var[K]

=
2NR′

1c∑
b0=1

2
NR′

1pb∑
b1=1

2
NR′

2pb∑
b2=1

2NR′
1c∑

b′0=1

2
NR′

1pb∑
b′1=1

2
NR′

2pb∑
b′2=1

(
P [Kb0,b1,b2 = 1,Kb′0,b′1,b′2

= 1] − P [Kb0,b1,b2 = 1]P [Kb′0,b′1,b‘2 = 1]
)

=
∑

b0‘=b0,(b1,b2,b1‘,b2‘)

(P [Kb0,b1,b2 = 1,Kb0,b1‘,b2‘ = 1] − P [Kb0,b1,b2 = 1]P [Kb0,b1‘,b2‘ = 1])

≤
∑

b0,(b1,b2,b1‘,b2‘)

P [Kb0,b1,b2 = 1,Kb0,b1‘,b2‘ = 1]
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because when b0 ̸= b0‘, that is, UN
1c (..., b0) and UN

1c (..., b
′
0) are independent, the RV’s Kb0,b1,b2

and Kb‘0,b1‘,b2‘ are independent and they do not contribute to the summation. We thus can

focus only on the case b0 = b0‘. We can write:

Var[K] ≤
∑

b0, b1=b1‘, b2=b2‘

P [Kb0,b1,b2 = 1]︸ ︷︷ ︸
=E[K]

+
∑

b0, b1=b1‘, b2 ̸=b2‘

P [Kb0,b1,b2 = 1]P [Kb0,b1,b2‘ = 1|Kb0,b1,b2 = 1]︸ ︷︷ ︸
=E[K] 2

N(R′
2pb

−B)

+
∑

b0, b1 ̸=b1‘, b2=b2‘

P [Kb0,b1,b2 = 1]P [Kb0,b1‘,b2 = 1|Kb0,b1,b2 = 1]︸ ︷︷ ︸
=E[K] 2

N(R′
1pb

−C)

+
∑

b0, b1 ̸=b1‘, b2 ̸=b2‘

P [Kb0,b1,b2 = 1]P [Kb0,b1‘,b2‘ = 1|Kb0,b1,b2 = 1]︸ ︷︷ ︸
=E[K] 2

N(R′
1pb

+NR′
2pb

−D)
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and

2−NB

= P [Kb0,b1,b2‘ = 1|Kb0,b1,b2 = 1]

= P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

2pb(1, 1, b0, 1, b2‘)
)
∈ TN

ϵ (pU2c,X2,U1c,U1pb,U2pb
)|

(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

2pb(1, 1, b0, 1, b2)
)
∈ TN

ϵ (pU2c,X2,U1c,U1pb,U2pb
)]

=
∑

uN
2pb∈T N

ϵ (pU2c,X2,U1c,U1pb,U2pb
|uN

2c,xN
2 ,uN

1c,uN
1pb)

pU2pb|U2c,U1c,X2

= 2−NI(U2pb;U1pb|U2c,U1c,X2),
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and

2−NC = P [Kb0,b1‘,b2 = 1|Kb0,b1,b2 = 1]

= P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1‘), UN

2pb(1, 1, b0, 1, b2)
)

∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)|

(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

2pb(1, 1, b0, 1, b2)
)

∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)]

=
∑

uN
1pb∈T N

ϵ (pU2c,X2,U1c,U1pb,U2pb
|uN

2c,xN
2 ,uN

1c,uN
2pb)

pU1pb|U2c,U1c

= 2−NI(U1pb;X2,U2pb|U1c,U2c),
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and

2−ND = P [Kb0,b1‘,b2‘ = 1|Kb0,b1,b2 = 1]

= P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1‘), UN

2pb(1, 1, b0, 1, b2‘)
)

∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)|

(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

2pb(1, 1, b0, 1, b2)
)

∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)]

=
∑

(uN
1pb,u

N
2pb)∈T N

ϵ (pU2c,X2,U1c,U1pb,U2pb
|uN

2c,xN
2 ,uN

1c)

pU2pb|U2c,U1c,X2
pU1pb|U2c,U1c

= 2−NI(U1pb;X2,U2pb|U1c,U2c) = 2−NC .

Hence, we can bound P [K = 0] as:

0 ≤ P [K = 0] ≤ 1 + 2N(R′
1pb−C) + 2N(R′

2pb−B) + 2N(R′
1pb+R′

2pb−C)

2N(R′
1c+R′

1pb+R′
2pb−I(U1c;X2|U2c)−C)

and P [K = 0] → 0 if

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C > 0

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C − (R′

2pb − B) > 0

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C − (R′

1pb − C) > 0

R′
1c + R′

1pb + R′
2pb − I(U1c;X2|U2c) − C − (R′

1pb + R′
2pb − C) > 0
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TABLE I

ERROR EVENTS AT DECODER 2.
Event w2c (w1c, b1) w2pa w2pb pY2|⋆
E2,1 X · · · · · · · · · pY2

E2,2a 1 X X · · · pY2|U2c

E2,2b 1 1 X · · · pY2|U2c,U1c

E2,3a 1 X 1 X pY2|U2c,X2

E2,3b 1 1 1 X PY2|U2c,U1c,X2

that is, if

R′
1c + R′

1pb + R′
2pb > I(U1c; X2|U2c) + I(U1pb; X2, U2pb|U1c, U2c)

= I(U1c, U1pb; X2|U2c) + I(U1pb; U2pb|U1c, U2c, X2)

R′
1c + R′

1pb > I(U1c; X2|U2c) + I(U1pb; X2|U1c, U2c)

= I(U1c, U1pb; X2|U2c)

R′
1c + R′

2pb > I(U1c; X2|U2c),

R′
1c > I(U1c; X2|U2c)

as in Equation 2.12a-Equation 2.12c, because the second to last equation is redundant.
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2.6.7 Decoding Errors at decoder 2

If decoder 2 decodes (ŵ2c, ŵ2pa, ŵ2pb) ̸= (1, 1, 1), then an error is committed. The probability

of error at decoder 2 is bounded as:

P [error 2|encoding successful] ≤
∑

i∈{1,2a,2b,3a,3b}

P [E2,i],

where E2,i, i ∈ {1, 2a, 2b, 3a, 3b}, are the error event defined in Table I. In Table I, an “X”

means that the corresponding message is in error (when the header of the column contains

two indices, an “X” indicates that at least one of the two indexes is wrong), a “1” means that

the corresponding message is correct, while the dots “· · · ” indicates that “it does not matter

whether the corresponding message is correct or not; in this case the most restrictive case is

when the message is actually wrong.” The last column of Table I specifies the pY2|⋆ to be used

in Equation 2.15.

We have that P [error 2|encoding successful] → 0 when N → ∞ if:

• When the event E2,1 occurs we have ŵ2c ̸= 1. In this case the received Y N
2 is independent

of the transmitted sequences. This follows from the fact that the codewords UN
2c are

generated in an iid fashion and all the other codewords are generated independently
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conditioned on UN
2c . Hence, when decoder 2 finds a wrong UN

2c , all the decoded codewords

are independent of the transmitted ones. We can bound the error probability of E2,1 as:

P [E2,1] = P

 ∪
w̃2c ̸=1,w̃2pa,w̃1c,w̃2pb,b0,b2

(Y N
2 , UN

2c (w̃2c), UN
1c (w̃1c, w̃2c, b0), XN

2 (w̃2c, w̃2pa), UN
2pb(w̃2c, w̃2pa, w̃1c, b0, w̃2pb, b2))

∈ TN
ϵ

(
pY2,U2c,U1c,X2,U2pb

)]
≤ 2N(R2c+R2pa+R1c+R′

1c+R2pb+R′
2pb)

∑
(yN

2 ,uN
2c,uN

1c,xN
2 ,uN

2pb)∈T N
ϵ

(
pY2,U2c,U1c,X2,U2pb

) p2|⋆|⋆=∅

≤ 2N(R2c+R2pa+R1c+R′
1c+R2pb+R′

2pb−I2|⋆|⋆=∅)

for p2|⋆ given in Equation 2.16 and I2|⋆ given in Equation 2.17. Hence P [E2,1] → 0 as

N → ∞ if Equation 3.36d is satisfied.

• When the event E2,2 occurs, i.e., either E2,2a or E2,2b, we have ŵ2c = 1 but ŵ2pa ̸= 1.

Whether ŵ1c is correct or not, it does not matter since decoder 2 is not interested in ŵ1c.

However we need to consider whether the pair (ŵ1c, b̂0) is equal to the transmitted one or

not because this affect the way the joint probability among all involved RV’s factorizes.

We have:

– Case E2,2a: either ŵ1c ̸= 1 or b̂0 ̸= b0. In this case, conditioned on the (correct)

decoded sequence UN
2c , the output Y N

2 is independent of the (wrong) decoded se-

quences UN
1c , UN

2pa and also of UN
2pb (because UN

2pb is superimposed to the wrong pair
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(UN
1c , U

N
2pa)). It is easy to see that the most stringent error event is when both ŵ1c ̸= 1

and b̂0 ̸= b0. Thus we have

P [E2,2a] = P

 ∪
w̃2pa ̸=1,w̃1c ̸=1,b0 ̸=b0,w̃2pb,b2

(Y N
2 , UN

2c (1), UN
1c (1, w̃1c, b0), XN

2 (1, w̃2pa), UN
2pb(1, w̃2pa, w̃1c, b0, w̃2pb, b2))

∈ TN
ϵ

(
pY2,U2c,U1c,X2,U2pb

)]
≤ 2N(R2pa+R1c+R′

1c+R2pb+R′
2pb)

∑
(yN

2 ,uN
2c,uN

1c,xN
2 ,uN

2pb)∈T N
ϵ

(
pY2,U2c,U1c,X2,U2pb

) p2|⋆|⋆=U2c

≤ 2N(R2pa+R1c+R′
1c+R2pb+R′

2pb−I2|⋆|⋆=U2c
)

for p2|⋆ given in Equation 2.16 and I2|⋆ given in Equation 2.17. Hence P [E2,2a] → 0

as N → ∞ if Equation 3.36e is satisfied.

– Case E2,2b: both ŵ1c = 1 and b̂0 = b0. In this case, conditioned on the (correct)

decoded (UN
2c , U

N
1c ), the output Y N

2 is independent of the (wrong) decoded sequences

(XN
2 , UN

2pb). Thus we have

P [E2,2b] = P

 ∪
w̃2pa ̸=1,w̃2pb,b2

(Y N
2 , UN

2c (1), UN
1c (1, 1, b0), XN

2 (1, w̃2pa), UN
2pb(1, w̃2pa, 1, b0, w̃2pb, b2)) ∈ TN

ϵ

(
pY2,U2c,U1c,X2,U2pb

)]
≤ 2N(R2pa+R2pb+R′

2pb)
∑

(yN
2 ,uN

2c,uN
1c,xN

2 ,uN
2pb)∈T N

ϵ

(
pY2,U2c,U1c,X2,U2pb

) p2|⋆|⋆=(U2c,U1c)

≤ 2N(R2pa+R2pb+R′
2pb−I2|⋆|⋆=(U2c,U1c))



44

for p2|⋆ given in Equation 2.16 and I2|⋆ given in Equation 2.17. Hence P [E2,2b] → 0

as N → ∞ if Equation 3.36f is satisfied.

• When the event E2,3 occurs, i.e., either E2,3a or E2,3b, we have ŵ2c = 1,ŵ2pa = 1 but

ŵ2pb ̸= 1. Again, whether ŵ1c is correct or not, it does not matter since decoder 2 is

not interested in ŵ1c. However we need to consider whether the pair (ŵ1c, b̂0) is equal

to the transmitted one or not because this affect the way the joint probability among all

involved RV’s factorizes. The analysis proceeds similarly as for the even E2,2.

We have:

– Case E2,3a: either ŵ1c ̸= 1 or b̂0 ̸= b0. In this case, conditioned on the (correct)

decoded sequences (UN
2c , X

N
2 ), the output Y N

2 is independent of the (wrong) decoded

sequences (UN
1c , U

n
2cU

N
2pb). It is easy to see that the most stringent error event is when

both ŵ1c ̸= 1 and b̂0 ̸= b0. Thus we have

P [E2,3a] = P

 ∪
w̃1c ̸=1,b0 ̸=b0,w̃2pb,b2

(Y N
2 , UN

2c (1), UN
1c (1, w̃1c, b0), XN

2 (1, 1), UN
2pb(1, 1, w̃1c, b0, w̃2pb, b2)) ∈ TN

ϵ

(
pY2,U2c,U1c,X2,U2pb

)]
≤ 2N(R1c+R′

1c+R2pb+R′
2pb)

∑
(yN

2 ,uN
2c,uN

1c,xN
2 ,uN

2pb)∈T N
ϵ

(
pY2,U2c,U1c,X2,U2pb

) p2|⋆|⋆=(U2c,X2)

≤ 2N(R2pa+R1c+R′
1c+R2pb+R′

2pb−I2|⋆|⋆=(U2c,X2))
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for p2|⋆ given in Equation 2.16 and I2|⋆ given in Equation 2.17. Hence P [E2,3a] → 0

as N → ∞ if Equation 3.36g is satisfied.

– Case E2,3b: both ŵ1c = 1 and b̂0 = b0. In this case, conditioned on the (correct)

decoded sequences (UN
2c , X

N
2 , UN

1c ), the output Y N
2 is independent of the (wrong)

decoded sequence UN
2pb. However, since (UN

2c , X
N
2 , UN

1c ) is the triplet that passed

the encoding binning step, they are jointly typical. Hence, in this case we cannot

use the factorization in p2|⋆ given in Equation 2.16, but we need to replace pU1c|U2c

in Equation 2.16 with pU1c|U2c,X2
. Thus we have

P [E2,3b] = P

 ∪
w̃2pb,b2

(Y N
2 , UN

2c (1), UN
1c (1, 1, b0), XN

2 (1, 1), UN
2pb(1, 1, 1, b0, w̃2pb, b2)) ∈ TN

ϵ

(
pY2,U2c,U1c,X2,U2pb

)]
≤ 2N(R2pb+R′

2pb)
∑

(yN
2 ,uN

2c,uN
1c,xN

2 ,uN
2pb)∈T N

ϵ

(
pY2,U2c,U1c,X2,U2pb

)
pU2c pX2|U2c

pU1c|U2c,X2
pU2pb|U2c,U1c,X2

pY2|U1c,U2c,X2

≤ 2N(R2pb+R′
2pb−I(Y2;U2pb|U1c,U2c,X2))

Hence P [E2,3b] → 0 as N → ∞ if Equation 3.36h is satisfied.
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TABLE II

ERROR EVENTS AT DECODER 1.
Event w2c (w1c, b1) w1pb pY1|⋆
E1,1 X · · · · · · pY1

E1,2 1 X · · · pY1|U2c

E1,3 1 1 X PY1|U2c,U1c

2.6.8 Decoding Errors at Decoder 1

The probability of error at decoder 1 is bounded as:

P [error 1|encoding successful] ≤
3∑

i=1

P [E1,i],

where P [E1,i] is the error event defined in Table II. The meaning of the symbols in Table II

is as for Table I. We have that P [error 1|encoding successful] → 0 when N → ∞ if:

• When the event E1,1 occurs we have ŵ2c ̸= 1. In this case the received Y N
1 is independent

of the transmitted sequences. We can bound the error probability of E1,1 as:

P [E1,1] = P

 ∪
w̃2c ̸=1,w̃1c,w̃1pb,b0,b1

(Y N
1 , UN

2c (w̃2c), UN
1c (w̃1c, w̃2c, b0), UN

1pb(w̃2c, w̃2pa, w̃1c, b0, w̃2pb, b1)) ∈ TN
ϵ

(
pY1,U2c,U1c,U1pb

)]
≤ 2N(R2c+R1c+R′

1c+R1pb+R′
1pb)

∑
(yN

1 ,uN
2c,uN

1c,uN
1pb)∈T N

ϵ

(
pY1,U2c,U1c,U1pb

) p1|⋆|⋆=∅

≤ 2N(R2c+R2pa+R1c+R′
1c+R2pb+R′

2pb−I1|⋆|⋆=∅)



47

for p1|⋆ given in Equation 2.16 and I1|⋆ given in Equation 2.20. Hence P [E1,1] → 0 as

N → ∞ if Equation 3.36i is satisfied.

• When the event E1,2 occurs, either ŵ1c ̸= 1, b̂0 ̸= b0 or both. In this case, conditioned

on the (correct) decoded sequence UN
2c , the output Y N

1 is independent of the (wrong)

decoded sequences UN
1c and UN

1pb . It is easy to see that the most stringent error event is

when both ŵ1c ̸= 1 and b̂0 ̸= b0. Thus we have

P [E1,2] = P

 ∪
w̃1c ̸=1,b0 ̸=b0,w̃1pb,b1

(Y N
1 , UN

2c (1), UN
1c (1, w̃1c, b0), UN

1pb(1, w̃1c, b0, w̃1pb, b1)) ∈ TN
ϵ

(
pY1,U2c,U1c,U1pb

)]
≤ 2N(R1c+R′

1c+R1pb+R′
1pb)

∑
(yN

1 ,uN
2c,uN

1c,uN
1pb)∈T N

ϵ

(
pY1,U2c,U1c,U1pb

) p1|⋆|⋆=U2c

≤ 2N(R1c+R′
1c+R1pb+R′

1pb−I1|⋆|⋆=U2c
)

for p1|⋆ given in Equation 2.19 and I1|⋆ given in Equation 2.20. Hence P [E1,2] → 0 as

N → ∞ if Equation 3.36j is satisfied.

• When the event E1,3 occurs, either ŵ1pb ̸= 1, b̂1 ̸= b1 or both. In this case, conditioned

on the (correct) decoded sequence UN
2c and UN

1c ), the output Y N
1 is independent of the
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(wrong) decoded sequences UN
1pb. It is easy to see that the most stringent error event is

when both ŵ1pb ̸= 1 and b̂1 ̸= b1. Thus we have

P [E1,3] = P

 ∪
w̃1pb ̸=1,b1 ̸=b1

(Y N
1 , UN

2c (1), UN
1c (1, 1, b0), UN

1pb(1, 1, b0, w̃1pb, b1)) ∈ TN
ϵ

(
pY1,U2c,U1c,U1pb

)]
≤ 2N(R1pb+R′

1pb)
∑

(yN
1 ,uN

2c,uN
1c,uN

1pb)∈T N
ϵ

(
pY1,U2c,U1c,U1pb

) p1|⋆|⋆=U2c,U1c

≤ 2N(R1c+R′
1c+R1pb+R′

1pb−I1|⋆|⋆=U2c,U1c
)

for p1|⋆ given in Equation 2.19 and I1|⋆ given in Equation 2.20. Hence P [E1,3] → 0 as

N → ∞ if Equation 3.36k is satisfied.

2.6.9 Two step binning

It is also possible to perform binning in a sequential manner. First, U1c is binned against X1,

and then U1pb and U2pb are binned against each other conditioned on (U2c, U1c) and (U2c, X2, U1c)

respectively.

With respect to the encoding operation of the previous section, this affects Section 2.6.3 as

follows.
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Given the message w2 = (w2c, w2pb, w2pa) and the message w1 = (w1c, w1pb), encoder 1 looks

for b0 such that

(UN
2c (w2c), XN

2 (w2c, w2pa), UN
1c (w2c, w1c, b0),

∈ TN
ϵ (pU2c,X2,U1c).

If not such a b0 exists, it sets b0 = 1. If more than one such b0 exists, it picks one uniformly

at random.

For the selected b0, encoder 1 looks for (b1, b2) such that:

(UN
2c (w2c), XN

2 (w2c, w2pa), UN
1c (w2c, w1c, b0), UN

1pb(w2c, w1c, b0, w1pb, b1), UN
2pb(w2c, w1c, b0, w2pb, b2))

∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

).

If not such a (b1, b2) exists, it sets (b1, b2) = (1, 1). If more than one such a (b1, b2) exists, it

picks one uniformly at random from the found ones.

For the selected (b0, b1, b2), encoder 1 sends XN
1 (w2pa, w2c, w1c, b0, w1pb, b1, w2pb, b2).

The next theorem states the condition under which this two step encoding procedure is

successful with high probability.
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Theorem 2.6.3. The encoding procedure of Section 2.6.9 is successful if

R′
1c ≥ I(U1c; X2|U2c), (2.21a)

R′
1pb ≥ I(U1pb; X2|U2c, U1c), (2.21b)

R′
1pb + R′

2pb ≥ I(U1pb; U2pa, X2, U2pb|U2c, U1c).. (2.21c)

Proof. An encoding error is committed if we cannot find a b0 in the first step or if, upon finding

the correct b0 in the first encoding step, we cannot find the correct (b1, b2) in the second step.

Let Ee,0 the probability of the first event and Ee,12 of the latter, than:

P [encoding NOT successful] ≤ P [Ee,0] + P [Ee,12|Ec
e,0]

where

P [Ee,0] = P [
∩2NR′

1c

b0=1

(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0)
)

/∈ TN
ϵ (pU2c,X2,U1c)]

= (1 − P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0)
)

/∈ TN
ϵ (pU2c,X2,U1c)])

2NR′
1c .

Using standard typicality arguments we have

P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0)
)

/∈ TN
ϵ (pU2c,X2,U1c)]

=
∑

u1c∈T N
ϵ (pU2c,X2,U1c

|U2c,X2) ≥ (1 − ϵ)2N(I(U1c;X2|U2c)+δ).
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Now we can write

P [Ee,0] ≤ (1 − (1 − ϵ)2N(I(U1c;X2|U2c)+δ))2
NR′

1c

≤ exp
(
1 − (1 − ϵ)2N(R′

1c−I(U1c;X2|U2c)+δ))
)

so that P [Ee,0] → 1 when N → 0 if Equation 2.21a is satisfied.

Now the error event Ee,12 can be divided in three distinct error events:

• Ee,21 a: it is not possible to find b1 such that (UN
2c , X

N
2 , UN

1c , U
N
1pb) ∈ TN

ϵ (pU2c,X2,U1c,U1pb
),

• Ee,21 b: it is not possible to find b2 such that (UN
2c , X

N
2 , UN

1c , U
N
2pb) ∈ TN

ϵ (pU2c,X2,U1c,U2pb
).

• Ee,21 c Given that we can find b1 and b2 satisfy the first two equations, we cannot find a

couple (b1, b2) such that (UN
2c , X

N
2 , UN

1c , U
N
1pb, U

N
2pb) ∈ TN

ϵ (pU2c,X2,U1c,U1pb,U2pb
).

We now establish the rate bounds that guarantee that the probability of error of each of these

events goes to zero.

For Ee,21 a we have:

P [Ee,21 a] = (1 − P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1)

)
/∈ TN

ϵ (pU2c,X2,U1c,U1pb
)])2

NR′
1pb

.

where

P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1)

)
/∈ TN

ϵ (pU2c,X2,U1c,U1pb
)

] ≥ (1 − ϵ)2−N(I(X2;U1pb|U2c,U1c)+δ)

As for Ee,0, this implies that P [Ee,21 a] → 1 when N → 0 if Equation 2.21b is satisfied.
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For Ee,21 b, we have that the probability of this event goes to one for large N given that

(U2c, X2, U1c) appear to be generated according to the distribution pU2c,X2,U1c and U2pb is gen-

erated according to pU2pb|U2c,X2,U1c
.

For Ee,21 c we have:

P [Ee,21 c] = (1 − P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

1pb(1, 1, b0, 1, b2)
)

/∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)])2
N(R′

1pb+R′
2pb)

.

where

P [
(
UN

2c (1), XN
2 (1, 1), UN

1c (1, 1, b0), UN
1pb(1, 1, b0, 1, b1), UN

1pb(1, 1, b0, 1, b2)
)

/∈ TN
ϵ (pU2c,X2,U1c,U1pb,U2pb

)]) ≤ 2I()+δ

this implies that P [Ee,21 c] → 1 when N → 0 if Equation 2.21c is satisfied.

Remark 2.6.4. Since the binning rate Equation 2.12a of Theorem 2.6.1 can be taken with

equality, the two step binning has the same performance of the joint binning. In fact by

setting Equation 2.21a to hold with equality, we obtain the equality between the binning rate

expression of the joint binning and the two step binning.

A plot of the permissable binning rates R1pb and R2pb is depicted in Figure 3
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Figure 3. The region of the admissible binning rates R1pb and R2pb in Theorem 2.6.1.

2.7 Comparison with existing achievable regions

We now show that the region of Theorem 2.6.1 contains all other known achievable rate

regions for the DM-CIFC. Showing inclusion of the rate regions (50, Thm. 2) , (52, Thm. 1)

and (51, Thm. 4.1) is sufficient to demonstrate the largest known DM-CIFC region, since the

region of (50) is shown to contain those of (25, Thm. 1) and (29).

2.7.1 Containment of region of Devroye et al. in RRTD

We refer to the region in (52, Thm. 1) as RDMT for brevity. We show this inclusion of

RDMT in RRTD with the following steps:

• We enlarge the region RDMT by removing some rate constraints.

• We further enlarge the region by enlarging the set of possible input distributions. This allows
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us to remove the V11 and Q from the inner bound. We refer to this region as Rout
DMT since is

enlarges the original achievable region.

• We make a correspondence between the RV’s and corresponding rates of Rout
DMT and RRTD.

• We choose a particular subset of RRTD, Rin
RTD, for which we can more easily show RDMT ⊆

Rout
DMT ⊂ Rin

RTD ⊆ RRTD, since Rout
DMT and Rin

RTD have identical input distribution decomposi-

tions and similar rate bound equations.

Enlarge the region RDMT

We first enlarge the rate region of (52, Thm. 1), RDMT by removing a number of constraints

(specifically, we remove equations (2.6, 2.8, 2.10, 2.13, 2.14, 2.16 2.17) of (52, Thm. 1)) to

obtain the region Rout
DMT defined as the set of all rate pairs satisfying:

R′
21 = I(V21; V11, V12|W ) (2.22a)

R′
22 = I(V22; V11, V12|W ) (2.22b)

R11 ≤ I(Y1, V12, V21; V11|W ) (2.22c)

R21 + R′
21 ≤ I(Y1, V11, V12; V21|W ) (2.22d)

R11 + R21 + R′
21 ≤ I(Y1, V12; V11, V21|W ) + I(V11; V21|W ) (2.22e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; V11, V21, V12|W ) + I(V11, V12; V21|W ) (2.22f)

R22 + R′
22 ≤ I(Y2, V12, V21; V22|W ) (2.22g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12; V22, V21|W ) + I(V22; V21|W ) (2.22h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12|W ) + I(V22, V21; V12|W ). (2.22i)
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taken over the union of distributions

pW pV11pV12pX1|V11,V12
pV21|V11V12

pV22|V11,V12
pX2|V11,V12,V21,V22

. (2.23)

Following the line of thoughts in (53, Appendix D) it is possible to show that without loss

of generality we can set X1 to be a deterministic function of V11 and V12, allowing us insert X1

next to V11, V12 as follows:

R′
21 = I(V21; X1, V11, V12|W ) (2.24a)

R′
22 = I(V22; X1, V11, V12|W ) (2.24b)

R11 ≤ I(Y1, V12, V21; V11|W ) (2.24c)

R21 + R′
21 ≤ I(Y1, X1, V11, V12;V21|W ) (2.24d)

R11 + R21 + R′
21 ≤ I(Y1, V12; V11, V21|W ) + I(V11; V21|W ) (2.24e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; X1, V11, V12, V21|W )

+I(X1, V11, V12; V21|W ) (2.24f)

R22 + R′
22 ≤ I(Y2, V12, V21;V22|W ) (2.24g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12; V22, V21|W ) + I(V22; V21|W ) (2.24h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12|W ) + I(V22, V21; V12|W ) (2.24i)

Using the factorization of the auxiliary RV’s in (52, Thm. 1), we may insert X1 next to V11

in Equation 2.24f.
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For Equation 2.24c:

R11 ≤ I(Y1, V12, V21; V11|W )

= I(Y1, V21; V11|V12,W ) + I(V12; V11|W )

= I(Y1, V21; V11|V12,W )

= I(Y1, V21; X1, V11|V12,W )

= I(Y1; X1, V11|V12, V21,W ) + I(V21; X1, V11|V12,W ).

For Equation 2.24e we have:

R11 + R21 + R′
21 ≤ I(Y1, V12; V11, V21|W ) + I(V11; V21|W )

= I(Y1; V11, V21|V12,W ) + I(V12; V11, V21|W ) + I(V11; V21|W )

= I(Y1; V11, V21|V12,W ) + I(V12; V21|V11,W ) + I(V11; V21|W )

= I(Y1; V11, V21|V12,W ) + I(V11, V12;V21|W )

= I(Y1; X1, V11, V21|V12,W ) + I(X1, V11, V12; V21|W )
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The original region is thus equivalent to

R′
21 = I(V21; X1, V11, V12|W ) (2.25a)

R′
22 = I(V22; X1, V11, V12|W ) (2.25b)

R11 ≤ I(Y1; X1, V11|V12, V21|W ) + I(V21; X1|V12,W ) (2.25c)

R21 + R′
21 ≤ I(Y1, X1, V11, V12; V21|W ) (2.25d)

R11 + R21 + R′
21 ≤ I(Y1; X1, V11, V21|V12,W ) + I(X1; V21|W ) (2.25e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; X1, V11, V21, V12|W )

+I(X1, V11, V12; V21|W ) (2.25f)

R22 + R′
22 ≤ I(Y2, V12, V21;V22|W ) (2.25g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12; V22, V21|W ) + I(V22; V21|W ) (2.25h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12|W ) + I(V22, V21; V12|W ) (2.25i)

union over all distributions that factor as in Equation 2.23.

Enlarge the class of input distribution and eliminate V11 and W

Now increase the set of possible input distribution of Equation 2.23 by letting V11 to have any
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joint distribution with V12. This is done by substituting pV11 with pV11|V12
in the expression of

the input distribution. With this substitution we have:

pW pV11|V12
pV12pX1|V11,V12

pV21|X1,V11V12
pV22|X1,V11,V12

pX2|X1,V11,V12,V21,V22

= pW pV12pV11,X1|V12
pV21|X1,V11V12

pV22|X1,V11,V12
pX2|X1,V11,V12,V21,V22

= pW pV12pX′
1|V12

pV21|X′
1,V12

pV22|X′
1,V12

pX2|X′
1,V12,V21,V22

with X ′
1 = (X1, V11). Since V12 is decoded at both decoders, the time sharing random W may be

incorporated with V12 without loss of generality and thus can be dropped. The region described

in (Equation 2.25) is convex and thus time sharing is not needed. With these simplifications,

the region Rout
DMT is now defined as

R′
21 = I(V21; X ′

1, V12) (2.26a)

R′
22 = I(V22; X ′

1, V12) (2.26b)

R11 ≤ I(Y1; X ′
1|V12, V21) + I(V21;X1|V12) (2.26c)

R21 + R′
21 ≤ I(Y1, X

′
1, V12;V21) (2.26d)

R11 + R21 + R′
21 ≤ I(Y1; X ′

1, V21|V12) + I(X1;V21) (2.26e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; X ′

1, V21, V12) + I(X ′
1, V12; V21) (2.26f)

R22 + R′
22 ≤ I(Y2, V12, V21; V22) (2.26g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12;V22, V21) + I(V22; V21) (2.26h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12) + I(V22, V21; V12) (2.26i)
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RV, rate of Theorem 2.6.1 RV, rate of (52, Thm. 1) Comments
U2c, R2c V12, R12 TX 2 → RX 1, RX 2
U1c, R1c V21, R21 TX 1 → RX 1, RX 2
U1pb, R1pb V22, R22 TX 1 → RX 1
X2, R2pa X ′

1, R11 TX 2 → RX 2
U2pb = ∅, R′

2pb = 0 – TX 1 → RX 2
R′

1c = I(U1c; X2|U2c) L21 − R21 = I(V21; V11, V12) Binning rate
R′

1pb = I(U1pb;X2|U1c, U2c) L22 − R22 = I(V22; V11, V12) Binning rates
X1 X2

union over all the distributions

pV12pX′
1|V12

pV21|X′
1,V12

pV22|X′
1,V12

pX2|X′
1,V12,V21,V22

Correspondence between the random variables and rates. When referring to (52) please

note that the index of the primary and cognitive user are reversed with respect to our notation

(i.e 1 → 2 and vice-versa). Consider the correspondences between the variables of (52, Thm.

1) and those of Theorem 2.6.1 in 2.7.1 to obtain the region Rout
DMT defined as the set of rate

pairs satisfying
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R′
1c = I(U1c; X2, U2c) (2.27a)

R′
1pb = I(U1pb; X2, U2c) (2.27b)

R2pa + R1c + R′
1c + R2c ≤ I(Y2; U1c, U2c, X2) + I(X2, U2c;U1c) (2.27c)

R2pa + R1c + R′
1c ≤ I(Y2;X2, U1c|U2c) + I(X2; U1c) (2.27d)

R1c + R′
1c ≤ I(Y2, X2, U2c; U1c) (2.27e)

R2pa ≤ I(Y2;X2|U2c, U1c) + I(U1c; X2|U2c) (2.27f)

R1pb + R′
1pb + R1c + R′

1c + R2c ≤ I(Y1;U1pb, U1c, U2c) + I(U1pb, U1c; U2c) (2.27g)

R1c + R1pb + R′
1c + R′

1pb ≤ I(Y1, U2c; U1pb, U1c) + I(U1pb; U1c) (2.27h)

R1pb + R′
1pb ≤ I(Y1, U2c, U1c; U1pb) (2.27i)

taken over the union of all distributions

pU2cpX2|U2c
pU1c|X2

pU1pb|X2
pX1|X2,U1c,U1pb

. (2.28)
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Next, we using the correspondences of the table and restrict the fully general input distribu-

tion of Theorem 2.6.1 to match the more constrained factorization of (Equation 2.28), obtaining

a region Rin
RTD ⊆ RRTD defined as the set of rate tuples satisfying

R′
1c = I(U1c; X2|U2c) (2.29a)

R′
1c + R′

1pb = I(X2;U1c, U1pb|U2c) (2.29b)

R2c + R1c + R2pa + R′
1c ≤ I(Y2; U2c, U1c, X2) + I(U1c; X2|U2c) (2.29c)

R2pa + R1c + R′
1c ≤ I(Y2; U1c, X2|U2c) + I(U1c; X2|U2c) (2.29d)

R1c + R′
1c ≤ I(Y2; U1c|U2c, X2) + I(U1c; X2|U2c) (2.29e)

R2pa ≤ I(Y2; X2|U2c, U1c) + I(U1c; X2|U2c) (2.29f)

R1pb + R′
1pb + R1c + R′

1c + R2c ≤ I(Y1; U2c, U1c, U1pb) (2.29g)

R1c + R1pb + R′
1c + R′

1pb ≤ I(Y1; U1c, U1pb|U2c) (2.29h)

R1pb + R′
1pb ≤ I(Y1; U1pb|U2c, U1c) (2.29i)

union of all distributions that factor as

pU2c,X2pU1c|X2
pU1pb|X2

pX1|X2,U1c,U1pb
.

Equation-by-equation comparison. We now show that Rout
DMT ⊆ Rin

RTD by fixing an input

distribution (which are the same for these two regions) and comparing the rate regions equation
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by equation. We refer to the equation numbers directly, and look at the difference between the

corresponding equations in the two new regions.

• Equation 2.29c-Equation 2.29a vs Equation 2.27c-Equation 2.27a: Noting the cancelation

/ interplay between the binning rates, we see that

(Equation 2.29c − Equation 2.29a) − (Equation 2.27d − Equation 2.27a) = 0.

• Equation 2.29d-Equation 2.29a vs. Equation 2.27d-Equation 2.27a:

(Equation 2.29d − Equation 2.29a) − (Equation 2.27d − Equation 2.27a)

= −I(X2; U1c) + I(U1c; X2, U2c)

= I(U2c; U1c|X2)

= 0

• Equation 2.29e-Equation 2.29a vs. Equation 2.27e-Equation 2.27a: again noting the

cancelations,

(Equation 2.29e − Equation 2.29a) − (Equation 2.27e − Equation 2.27a) = 0

• Equation 2.29f vs. Equation 2.27f:

Equation 2.29f − Equation 2.27f = 0
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• Equation 2.29g-Equation 2.29b vs. Equation 2.27g-Equation 2.27b-Equation 2.27a

(Equation 2.29g − Equation 2.29b) − (Equation 2.27g − Equation 2.27b − Equation 2.27a)

= −I(X2; U1c, U1pb|U2c)

−I(U1pb, U1c; U2c) + I(U1c; U2c, X2) + I(U1pb;U2c, X2)

= −I(U1pb, U1c; X2, U2c) + I(U1c; U2c, X2) + I(U1pb; U2c, X2)

= −I(U1pb;X2, U2c) − I(U1c; X2, U2c|U1pb) + I(U1c; U2c, X2) + I(U1pb; U2c, X2)

= −I(U1c; X2, U2c|U1pb) + I(U1c; U2c, X2)

= −H(U1c|U1pb) + H(U1c|X2, U2c, U1pb) + H(U1c) − H(U1c|X2, U2c)

= I(U1c; U1pb) > 0

where we have used the fact that U1c and U1pb are conditionally independent given

(U2c, X2).

• Equation 2.29h−Equation 2.29b vs. Equation 2.27h−Equation 2.27b−Equation 2.27a:

(Equation 2.29h − Equation 2.29b) − (Equation 2.27h − Equation 2.27b − Equation 2.27a)

= −I(X2; U1c, U1pb|U2c) − I(U2c; U1c, U1pb) + I(U1pb;U2c, X2) − I(U1pb; U1c) + I(U1c; X2, U2c)

= −I(X2, U2c; U1c, U1pb) + I(U1pb; U2c, X2) − I(U1pb;U1c) + I(U1c; X2, U2c)

= −I(X2, U2c; U1pb) − I(U1c; X2, U2c|U1pb) + I(U1pb; U2c, X2) − I(U1pb; U1c) + I(U1c; X2, U2c)

= −I(U1c; X2, U2c, U1pb) + I(U1c; X2, U2c)

= −I(U1c; X2, U2c) − I(U1c; U1pb|X2, U2c) + I(U1c; X2, U2c)

= 0
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where we have used the fact that U1c and U1pb are conditionally independent given

(U2c, X2).

• Equation 2.29i−Equation 2.29b+Equation 2.29a vs. Equation 2.27i−Equation 2.27b:

(Equation 2.29i − Equation 2.29b + Equation 2.29a) − (Equation 2.27i − Equation 2.27b)

= −I(U1pb;X2|U2c, U1c) − I(U1pb;U2c, U1c) + I(U1pb;X2, U2c)

= −I(U1pb;X2, U2c, U1c) + I(U1pb; U2c, X2)

= −I(U1pb;U1c|U2c, X2)

= 0

2.7.2 Containment of the region of Biao et al. in RRTD

The independently derived region in (50, Thm. 2) uses a similar encoding structure as that

of RRTD with two exceptions: a) the binning is done sequentially rather than jointly as in

RRTD leading to binning constraints (43)–(45) in (50, Thm. 2) as opposed to Equation 2.12a–

Equation 2.12c in Thm.2.6.1. Notable is that both schemes have adopted a Marton-like binning

scheme at the cognitive transmitter, as first introduced in the context of the CIFC in (50). b)

While the cognitive messages are rate-split in identical fashions, the primary message is split

into 2 parts in (50, Thm. 2) (R1 = R11 + R10, note the reversal of indices) while we explicitly

split the primary message into three parts R2 = R2c + R2pa + R2pb. We show that the region of

(50, Thm.2), denoted as RCC ⊆ RRTD in two steps:

• We first show that we may WLOG set U11 = ∅ in (50, Thm.2), creating a new region R′
CC .
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• We next make a correspondence between our RV’s and those of (50, Thm.2) and obtain

identical regions.

We note that the primary and cognitive indices are permuted in (50).

We first show that U11 in (50, Thm. 2) may be dropped WLOG. Consider the region RCC

of (50, Thm. 2), defined as the union over all distributions pU10,U11,V11,V20,V22,X1,X2pY1,Y2|X1,X2

of all rate tuples satisfying:

R1 ≤ I(Y1; V11, U11, V20, U10) (2.30a)

R2 ≤ I(Y2; V20, V22|U10) − I(V22, V20; U11|U10) (2.30b)

R1 + R2 ≤ I(Y1; V11, U11|V20, U10) + I(Y2; V22, V20, U10)

−I(V22;U11, V11|V20, U10) (2.30c)

R1 + R2 ≤ I(Y1; V11, U11, V20, U10) + I(Y2; V22|V20, U10)

−I(V22;U11, V11|V20, U10) (2.30d)

2R2 + R1 ≤ I(Y1; V11, U11, V20|U10) + I(Y2; V22|V20, U10) + I(Y2; V20, V22, U10)

−I(V22;U11, V11|V20, U10) − I(V22, V20; U11|U10) (2.30e)
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Now let R′
CC be the region obtained by setting U ′

11 = ∅ and V ′
11 = (V11, U11) while keeping all

remaining RV’s identical. Then R′
CC is the union over all distributions pU10,V ′

11,V20,V22,X1,X2
pY1,Y2|X1,X2

,

with V ′
11 = (V11, U11) in RCC , of all rate tuples satisfying:

R1 ≤ I(Y1; V11, U11, V20, U10) (2.31a)

R2 ≤ I(Y2; V20, V22|U10) (2.31b)

R1 + R2 ≤ I(Y1; V11, U11|V20, U10) + I(Y2; V22, V20, U10)

−I(V22;U11, V11|V20, U10) (2.31c)

R1 + R2 ≤ I(Y1; V11, U11, V20, U10) + I(Y2; V22|V20, U10)

−I(V22;U11, V11|V20, U10) (2.31d)

2R2 + R1 ≤ I(Y1; V11, U11, V20|U10) + I(Y2; V22|V20, U10) + I(Y2; V20, V22, U10)

−I(V22;U11, V11|V20, U10) (2.31e)

Comparing the two regions equation by equation, we see that

• Equation 2.30a= Equation 2.31a

• Equation 2.30b < Equation 2.31b as this choice of RV’s sets the generally positive mutual

information to 0

• Equation 2.30c=Equation 2.31c

• Equation 2.30d=Equation 2.31d
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RV, rate of Theorem 2.6.1 RV, rate of (52, Thm. 1) Comments
U2c, R2c U10, R10 TX 2 → RX 1, RX 2
X2 = U2c, R2pa = 0 U11 = ∅, R11 = 0 TX 2 → RX 2
U1c, R1c V20, R20 TX 1 → RX 1, RX 2
U1pb, R1pb V22, R22 TX 1 → RX 1
U2pb, R2pb V11 TX 1 → RX 2
R′

1c L20 − R20

R′
1pb L22 − R22

R′
2pb L11 − R11

X1 X2

X2 X1

• Equation 2.30e < Equation 2.31e as this choice of RV’s sets the generally positive mutual

information to 0

From the previous, we may set U11 = ∅ in the region RCC of (50, Thm. 2) without loss of

generality, obtaining the region R′
CC defined in Equation 2.31a – Equation 2.31e. We show that

R′
CC may be obtained from the region RRTD with the assignment of RV’s, rates and binning

rates in 2.7.2 .
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Evaluating R′
CC defined by Equation 2.31a – Equation 2.31e with the above assignment,

translating all RV’s into the notation used here, we obtain the region:

R′
1c ≥ 0

R′
1pb + R′

2pb ≥ I(U1pb; U2pb|U2c, U1c)

R2pb + R′
2pb ≤ I(Y2; U2pb|U2c, U1c)

R2pb + R′
2pb + R1c + R′

1c ≤ I(Y2; U1c, U2pb|U2c)

R2pb + R′
2pb + R1c + R′

1c + R2c ≤ I(Y2; U1c, U2c, U2pb)

R1pb + R′
1pb ≤ I(Y1; U1pb|U2c, U1c)

R1pb + R′
1pb + R1c + R′

1c ≤ I(Y1; U1pb, U1c|U2c)

R1pb + R′
1pb + R1c + R′

1c + R2c ≤ I(Y1; U1pb, U1c, U2c)
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Note that we may take binning rate equations R′
1c ≥ 0 and R′

1pb +R′
2pb ≥ I(U1pb; U2pb|U2c, U1c)

to be equality without loss of generality - the largest region will take R′
1c, R

′
1pb, R

′
2pb as small as

possible. The region RRTD with R2pa = 0

R′
1c ≥ 0

R′
1c + R′

1pb ≥ 0

R′
1c + R′

1pb + R′
2pb ≥ I(U1pb; U2pb|U2c, U1c)

R2pb + R′
2pb ≤ I(Y2; U2pb|U2c, U1c)

R2pb + R′
2pb + R1c + R′

1c ≤ I(Y2; U1c, U2pb|U2c)

R2pb + R′
2pb + R1c + R′

1c + R2c ≤ I(Y2; U1c, U2c, U2pb)

R1pb + R′
1pb ≤ I(Y1; U1pb|U2c, U1c)

R1pb + R′
1pb + R1c + R′

1c ≤ I(Y1; U1pb, U1c|U2c)

R1pb + R′
1pb + R1c + R′

1c + R2c ≤ I(Y1; U1pb, U1c, U2c)

For R′
1c = 0 these two regions are identical, showing that RRTD is surely no smaller than RCC .

For R′
1c > 0, RRTD , the binning rates of the region RRTD are looser than the ones in RCC .

This is probably due to the fact that the first one uses joint binning and latter one sequential

binning. Therefore RRTD may produce rates larger than RCC . However, in general, no strict

inclusion of RCC in RRTD has been shown.

2.7.3 Containment of the region of Jiang et al. in RRTD:

In this scheme the common messages are created independently instead of having the com-

mon message from transmitter 1 being superposed to the common message from transmitter 2.
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The former choice introduces more rate constraints than the latter and allows us to show in-

clusion in RRTD.

The region of (51) is expressed as the set of all rate tuples satisfying

R′
22 ≥ I(W2; V1|U1, U2) (2.32a)

R′
11 + R′

22 ≥ I(W2; W1, V1|U1, U2) (2.32b)

R11 + R′
11 ≤ I(V1, W1; Y1|U1, U2) (2.32c)

R12 + R11 + R′
11 ≤ I(U1, V1,W1; Y1|U2) (2.32d)

R21 + R11 + R′
11 ≤ I(U2, V1,W1; Y1|U1) (2.32e)

R12 + R21 + R11 + R′
11 ≤ I(U1, V1,W1, U2;Y1) (2.32f)

R22 + R′
22 ≤ I(W2; Y2|U1, U2) (2.32g)

R21 + R22 + R′
22 ≤ I(U2,W2; Y2|U1) (2.32h)

R12 + R22 + R′
22 ≤ I(U1,W2; Y2|U2) (2.32i)

R12 + R21 + R22 + R′
22 ≤ I(U1, U2,W2; Y2) (2.32j)

union over all the distributions

pU1pV1|U1
pX1|V1,U1

pU2pW1,W2|V1,U1,U2
pX0|W1,W2,V1,U1,U2

pY1,Y2|X1,X0

for (R′
11, R

′
22, R11, R12, R21, R22) ∈ R6

+.
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Following the argument of (53, Appendix D) we can show that WLG we can take X1 and

X2 to be deterministic functions, so that we can write

R′
22 ≥ I(W2; V1, X1|U1, U2) (2.33a)

R′
11 + R′

22 ≥ I(W2; W1, V1, X1|U1, U2) (2.33b)

R11 + R′
11 ≤ I(V1, X1,W1; Y1|U1, U2) (2.33c)

R12 + R11 + R′
11 ≤ I(U1, V1, X1,W1;Y1|U2) (2.33d)

R21 + R11 + R′
11 ≤ I(U2, V1, X1,W1;Y1|U1) (2.33e)

R12 + R21 + R11 + R′
11 ≤ I(U1, V1, X1W1, U2; Y1) (2.33f)

R22 + R′
22 ≤ I(W2; Y2|U1, U2) (2.33g)

R21 + R22 + R′
22 ≤ I(U2,W2; Y2|U1) (2.33h)

R12 + R22 + R′
22 ≤ I(U1,W2; Y2|U2) (2.33i)

R12 + R21 + R22 + R′
22 ≤ I(U1, U2,W2; Y2). (2.33j)

We can now eliminate one RV by noticing that

pU1pV1|U1
pX1|V1,U1

pU2pW1,W2|V1,U1,U2
pX0|W1,W2,V1,U1,U2

pY1,Y2|X1,X0

= pU1pV1,X1|U1
pU2pW1,W2|V1,U1,X1,U2

pX0|W1,W2,V1,U1,X1,U2
pY1,Y2|X1,X0

,

and setting V ′
1 = [V1, X1], to obtain the region



72

R′
22 ≥ I(W2; V ′

1 |U1, U2) (2.34a)

R′
11 + R′

22 ≥ I(W2; W1, V
′
1 |U1, U2) (2.34b)

R11 + R′
11 ≤ I(V ′

1 ,W1; Y1|U1, U2) (2.34c)

R12 + R11 + R′
11 ≤ I(U1, V

′
1 ,W1; Y1|U2) (2.34d)

R21 + R11 + R′
11 ≤ I(U2, V

′
1 ,W1; Y1|U1) (2.34e)

R12 + R21 + R11 + R′
11 ≤ I(U1, V

′
1W1, U2; Y1) (2.34f)

R22 + R′
22 ≤ I(W2; Y2|U1, U2) (2.34g)

R21 + R22 + R′
22 ≤ I(U2,W2; Y2|U1) (2.34h)

R12 + R22 + R′
22 ≤ I(U1,W2; Y2|U2) (2.34i)

R12 + R21 + R22 + R′
22 ≤ I(U1, U2, W2; Y2) (2.34j)

taken over the union of all distributions of the form

pU1pV ′
1 |U1

pU2pW1,W2|V ′
1 ,U1,U2

pX0|W1,W2,V ′
1 ,U1,U2

pY1,Y2|V ′
1 ,X0

We equate the RV’s in the region of (51) with the RV’s in Theorem 2.6.1 as in 2.7.3.
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RV, rate of Theorem 2.6.1 RV, rate of (52, Thm. 1) Comments
U2c, R2c U1, R12 TX 2 → RX 1, RX 2
X2, R2pa V ′

1 , R
′
11 TX 2 → RX 2

U1c, R1c U2, R21 TX 1 → RX 1, RX 2
U1pb, R1pb W2, R22 TX 1 → RX 1
U2pb, R2pb = 0 W1 TX 1 → RX 2
R′

1c L20 − R20

R′
1pb L11 − R11

R′
2pb L22 − R22

X1 X0

X2 X1

With the substitution in the achievable rate region of Equation 2.34, we obtain the region

R′
1pb ≥ I(U1pb; X2|U2c, U1c) (2.35a)

R′
1pb + R′

2pb ≥ I(U1pb; U2pb, X2|U2c, U1c) (2.35b)

R2pa + R′
2pb ≤ I(X2, U2pb; Y2|U2c, U1c) (2.35c)

R2c + R2pa + R′
2pb ≤ I(U2c, X2, U2pb; Y2|U1c) (2.35d)

R1c + R2pa + R′
2pb ≤ I(U1c, X2, U2pb;Y2|U2c) (2.35e)

R2c + R1c + R2pa + R′
2pb ≤ I(U2c, X2, U1c, U1pb; Y2) (2.35f)

R1pb + R′
1pb ≤ I(U1pb; Y1|U2c, U1c) (2.35g)

R1c + R1pb + R′
1pb ≤ I(U1c, U1pb; Y1|U2c) (2.35h)

R2c + R1pb + R′
1pb ≤ I(U2c, U1pb; Y1|U1c) (2.35i)

R2c + R1c + R1pb + R′
1pb ≤ I(U2c, U1c, U1pb; Y1) (2.35j)
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taken over the union of all distributions of the form

pU1cpU2cpX2|U2c
pU1pb,U2pb|U1c,U2c,X2

pX1|U2c,U1c,U1pb,U2pb
.

Set R2pb = 0 and R′
1c = I(U1c; X2|U2c) in the achievable scheme of Theorem 2.6.1 and consider

the factorization of the remaining RV’s as in the scheme of Equation 2.35, that is, according to

pU1cpU2cpX2|U2c
pU1pb,U2pb|U1c,U2c,X2

pX1|U2c,X2,U1c,U1pb,U2pb
.

With this factorization of the distributions, we obtain the achievable region

R′
1c = I(U1c;X2|U2c) (2.36a)

R′
1pb ≥ I(U1pb; X2|U2c, U1c) (2.36b)

R′
1pb + R′

2pb ≥ I(U1pb; X2, U2pb|U2c, U1c) (2.36c)

R2pa + R′
2pb ≤ I(Y2; X2, U2pb|U2c, U1c) + I(U1c; X2|U2c) (2.36d)

R1c + R2pa + R′
2pb ≤ I(Y2; U1c, X2, U2pb|U2c) (2.36e)

R2c + R1c + R2pa + R′
2pb ≤ I(Y2; U2pb, U1c, U2c, X2) (2.36f)

R1pb + R′
1pb ≤ I(Y1; U1pb|U2c, U1c) (2.36g)

R1c + R1pb + R′
1pb ≤ I(Y1; U1c, U1pb|U2c) (2.36h)

R2c + R1c + R1pb + R′
1pb ≤ I(Y1; U2c, U1c, U1pb) (2.36i)
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Note that with this particular factorization we have that I(U1c;X2|U2c) = 0, since X2 is

conditionally independent on U1c given U2c.

We now compare the region of Equation 2.35 and Equation 2.36 for a fixed input distribution,

equation by equation:

Equation 2.36b = Equation 2.35a

Equation 2.36c = Equation 2.35b

Equation 2.36d = Equation 2.35c

Equation 2.36e = Equation 2.35e

Equation 2.36f = Equation 2.35f

Equation 2.36g = Equation 2.35g

Equation 2.36h = Equation 2.35h

Equation 2.36i = Equation 2.35j

clearly Equation 2.35d and Equation 2.35i are extra bounds that further restrict the region

in (51) to be smaller than the region of Theorem 2.6.1.

2.8 New capacity results for the DM-CIFC

We now look at the expression of the outer bound (26, Thm. 3.1) to gain an insight on the

achievable scheme that is potentially capacity achieving. In particular we look at the expression

of the corner points of the outer bound region for a fixed pU,X1,X2 and try to interpret the RV’s

as private and common messages to be decoded at the transmitter side. We then consider

an achievable scheme inspired by these observation and we show that such scheme achieves

capacity for a particular class of channels. This class of channels contains the ’very strong’ and
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the ’very weak’ interference regime and thus it is the largest region where capacity is currently

known.

The outer bound region of (26, Thm. 3.1) has at most two corner points where both R1

and R2 are non zero:

(Rout (a)
1 , R

out (a)
2 ) = (I(Y1; X1|U,X2), I(Y2; U,X2)) (2.37)

(Rout (b)
1 , R

out (b)
2 ) = (I(Y1; X1|U,X2) + I(Y2; U,X2) − ∆, ∆) (2.38)

∆ = [I(Y2; U,X2) − I(Y1; U |X2)]+,

since

R
out (a)
2 = min{I(Y2; U,X2), I(Y2; U,X2) + I(Y1; X1|U,X2)} = I(Y2; U,X2),

R
out (a)
1 = min{I(Y1; X1|U,X2), I(Y1; X1|X2)} = I(Y1;X1|U,X2),

and

R
out (b)
2 = min{I(Y2; U,X2), I(Y2;U,X2) + I(Y1; X1|U,X2) − I(Y1; X1|X2)}

= [I(Y2;U,X2) + min{0, I(Y1; X1|U,X2) − I(Y1; X1, U |X2)}]+

= [I(Y2;U,X2) − I(Y1; U |X2)]+ , ∆,

R
out (b)
1 ≤ min{I(Y1; X1|X2), I(Y2; U,X2) + I(Y1; X1|U,X2)}

= I(Y1;X1|U,X2) + I(Y2; U,X2) − max{I(Y2; U,X2) − I(Y1; U |X2), 0}

= I(Y1;X1|U,X2) + I(Y2; U,X2) − ∆.
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Proving the achievability of both these corner points for any pU,X1,X2 shows capacity by a

simple time sharing argument.

We can now look at the corner point expression and try to draw some intuition on the

achievable schemes that can possibly achieve these rates.

For the corner point (R(a)
1 , R

(a)
2 ) we can interpret (U,X2) as a common message from trans-

mitter 2 to receiver 2 that is also decoded at receiver 1. X1 is superposed to (U,X2) since the

decoding of X1 follows the one of (U,X2) at decoder 2.

The corner point (Rout (b)
1 , R

out (b)
2 ) has two possible expressions.

If I(Y1;U |X2) ≤ I(Y2; U,X2) we have that

(Rout (b)′

1 , R
out (b)′

2 ) = (I(Y1; X1, U |X2), I(Y2;U,X2) − I(Y1; U |X2)) (2.39)

which suggests the that X2 is again the common primary message and the cognitive message

is divided a in public and private part, U and X1 respectively.

If I(Y1;U |X2) > I(Y2; U,X2) we have

(Rout (b)”
1 , R

out (b)”
2 ) = (I(Y2; U,X2) + I(Y1; X1, U |X2), 0) . (2.40)

In this case outer bound has only one corner point where both rates are non zero. Note that

we can always achieve the point

(Rin (b)”
1 , R

in (b)”
2 ) = (I(Y1; X1, U |X2), 0)
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by having transmitter 2 sending a known signal. In this case we have R
out (b)”
2 = R

in (b)”
2 and

R
out (b)”
1 ≤ R

in (b)”
1 since

I(Y1;X1, U |X2) ≥ I(Y2; U,X2) + I(Y1;X1, U |X2)

I(Y1;U |X2) > I(Y2; U,X2).

So in this case showing the achievability of the point in Equation 2.38 is sufficient to show

capacity.

Guided by these considerations, we consider a scheme that has only the components U2c, U1c

and U1pb, that is the primary message ω2 is common and the cognitive message ω1 is split in

private and public part. With this scheme we are able to extend the capacity results in the

“very weak interference” of Theorem 2.4.5 and the “very strong interference” of Theorem 3.4.3.

This scheme coincides with the one in (54) which achieves capacity if cognitive receiver has to

decode both messages (even with secrecy constraint).

Theorem 2.8.1. Capacity in the “better cognitive decoding” regime.

When the following condition holds

I(Y1; X2, U) ≥ I(Y2; X2, U) ∀pX1,X2,U (2.41)

the capacity of the DM-CIFC is given by region in Equation 2.1
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Proof. Consider the achievable region of Theorem 2.6.1 when setting

X1 = U1pb

X2 = U2c = U2pb

so that

R2 = R2c

R2pa = R2pb = 0

R′
1c = R′

1pb = R′
2pb = 0.

In the resulting scheme, the message from transmitter 2 to receiver 2 is all common while

the message from transmitter 1 to receiver 1 is split between common and private part. The

achievable region of this sub-scheme is:

R2 + R1c ≤ I(Y2; U1c, X2) (2.42a)

R2 + R1c + R1pb ≤ I(Y1; U1c, X2) (2.42b)

R1c + R1pb ≤ I(Y1; U1c, X1|U2c) (2.42c)

R1pb ≤ I(Y1; X1|X2, U1c), (2.42d)
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by applying the Fourier-Motzkin elimination (55) we obtain the following region

R1 ≤ I(Y1; U1c, X1|X2) (2.43a)

R2 ≤ I(Y2; U1c, X2) (2.43b)

R1 + R2 ≤ I(Y2; U1c, X2) + I(Y1; X1|X2, U1c) (2.43c)

R1 + R2 ≤ I(Y1; X2, U1c, X1) (2.43d)

When letting U1c = U we have that, Equation 2.1a matches Equation 2.43a , Equation 2.1b

matches Equation 2.43b and Equation 2.1c matches Equation 2.43c and Equation 2.43d is

redundant when

I(Y1;X2, X1, U) ≥ I(Y2; U,X2) + I(Y1;X1|X2, U)

or equivalently

I(Y1; U,X2) ≥ I(Y2; U,X2). (2.44)

We term the condition Equation 2.44 “better cognitive decoding” since decoder 1 has a

higher mutual information among the receiver channel output and the RV’s U and X2 than the

primary receiver.
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Remark 2.8.2. The “better cognitive decoding” in Equation 2.44 is looser than both the “very

weak interference” condition of Equation 2.7 and the “very strong interference” condition of

Equation 3.6 In fact summing the two equations of the condition in Equation 2.7 we have

I(U ; Y1|X2) + I(X2; Y1) ≥ I(U ; Y2|X2) + I(X2; Y2)I(Y1; U,X2) ≥ I(Y2; U,X2)

which corresponds to condition Equation 2.44. Similarly by summing the two equation of the

condition in Equation 3.6 we obtain

I(Y1; X1, X2) + I(X1;Y2|X2) ≥ I(Y2; X1, X2) + I(X1; Y1|X2) ⇐⇒

I(Y1; X1, X2) − I(X1;Y1|X2) ≥ I(Y2; X1, X2) − I(X1;Y2|X2) ⇐⇒

I(Y1; X1, X2, U) − I(X1; Y1|X2) ≥ I(Y2; X1, X2, U) − I(X1; Y2|X2) ⇐⇒

I(Y1; X2, U) ≥ I(Y2; X2, U)

which again corresponds to condition Equation 2.44.

Since both Equation 2.7 and Equation 3.6 imply the Equation 2.44, we conclude that Equa-

tion 2.44 is more general than the previous two.

The scheme that achieves capacity in very weak interference is obtained by setting U1c = X2

so that all the cognitive message is private and the primary message is common. The scheme

that achieves capacity in very strong interference is obtained by setting U1c = X1 so that both

transmitters send only public messages. The scheme that we use to show the achievability in the

“strong cognitive decoding” regime mixes these two schemes by splitting the cognitive message



82

in a public and a private part. This relaxes the strong interference achievability conditions as

now the cognitive encoder needs to decode only part of the cognitive message. The scheme also

relaxes the very weak achievability condition since it allows the cognitive encoder to decode

part of the cognitive message and remove its unwanted effects. For this reason, the resulting

achievability conditions are looser than both cases.

2.9 Capacity for the semi-deterministic CIFC

Consider the specific class of DM-CIFC for which the signal received at receiver 1 is a

deterministic function of the channel inputs, that is

Y1 = f1(X1, X2). (2.45)

This class of channels is termed semi-deterministic CIFC and it was first introduced in (56).

In (56) capacity is derived for the case I(Y1; X2) ≥ I(Y2; X2), we extend this result by showing

the capacity in the general case. Note that the authors of (56) consider the case where f1 is

invertible. We consider a more general case where such condition is not required.

Theorem 2.9.1. The capacity of the semi-deterministic cognitive interference channel in Equa-

tion 2.45 is

R1 ≤ H(Y1|X2) (2.46a)

R2 ≤ I(Y2; U,X2) (2.46b)

R1 + R2 ≤ I(Y2; U,X2) + H(Y1|U,X2) (2.46c)
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union over all the distributions pU,X1,X2.

Proof. Outer bound

The outer bound is obtained from Theorem 2.4.1 , “one auxiliary RV outer bound” , by

using the deterministic condition in Equation 2.45.

Achievability

Consider the scheme with only the RV’s X2, U1pb and U2pb, obtained by setting U2c = U1c =

∅. The achievable region of Theorem 2.6.1 becomes:

R′
1pb ≥ I(U1pb; X2) (2.47a)

R′
1pb + R′

2pb ≥ I(U1pb; U2pb, X2) (2.47b)

R2pa + R2pb + R′
2pb ≤ I(Y2; U2pb, X2) (2.47c)

R2pb + R′
2pb ≤ I(Y2; U2pb|X2) (2.47d)

R1pb + R′
1pb ≤ I(Y1; U1pb), (2.47e)

union over all the input distributions pU1pb,U2pb,X1,X2pY1,Y2|X1,X2
.
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From the Fourier Motzkin elimination of this sub-scheme, we have that we can set R2pb = 0

without loss of generality and that the region can be rewritten as

R0(U1pb, U2pb, X2)
∆= { R1 ≤ I(Y1; U1pb) − I(U1pb; X2) (2.48a)

R1 ≤ I(Y2; U2pb|X2) − I(U1pb; U2pb|X2) + I(Y1; U1pb)

−I(U1pb;X2) (2.48b)

R2 ≤ I(Y2; U2pb, X2) (2.48c)

R1 + R2 ≤ I(Y2; U2pb, X2) + I(Y1; U1pb)

−I(U1pb;U2pb, X2)} (2.48d)

union over all the distributions that factor as

pU1pb,U2pb,X1,X2pY1,Y2|X1,X2
(2.49)

Let now

R1(U1pb, U2pb, X2)
∆= { R1 ≤ I(Y1; U1pb) − I(U1pb; X2) (2.50a)

R2 ≤ I(Y2; U2pb, X2) (2.50b)

R1 + R2 ≤ I(Y2; U2pb, X2) + I(Y1; U1pb)

−I(U1pb; U2pb, X2)} (2.50c)
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and

R2(U1pb, X2)
∆= { R1 ≤ I(Y1;U1pb) − I(U1pb;X2) (2.51a)

R2 ≤ I(Y2;X2)}. (2.51b)

Notice that

R2(U1pb, X2) ⊆ R1(U1pb, U2pb, X2) ⊆ R0(U1pb, U2pb, X2),

since

R2(U1pb, X2) = R1(U1pb, U2pb = X2, X2) = R0(U1pb, U2pb = X2, X2),

and R0(U1pb, U2pb, X2) has one less constraint than R1(U1pb, U2pb, X2).

We now want to show that

∪
pX2,U1pb,U2pb

R0 =
∪

pX2,U1pb,U2pb
R1,

that is, Equation 2.48b can be removed from the Fourier Motzkin eliminated region of Equa-

tion 2.47.

The proof of this equivalence follows the same line as (57, Lemma 2).

For those P (U1pb, U2pb, X2) such that

I(Y2;U2pb|X2) − I(U1pb;U2pb|X2) ≥ 0
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we have

R1(U1pb, U2pb, X2) = R0(U1pb, U2pb, X2).

For those P (U1pb, U2pb, X2) such that

I(Y2;U2pb|X2) − I(U1pb;U2pb|X2) < 0

we have that the point

(R1, R1) = (I(Y1; U1pb − I(U1pb; X2)), I(Y2; X2))

is achievable in R2. Such point lies inside R1 and R0 and satisfies all the rate constraints in

Equation 2.48 but Equation 2.48b. In particular the sum rate Equation 2.48d given by

R1 + R2 ≤ I(Y2; U2pb, X2) + I(Y1; U1pb) − I(U1pb; U2pb, X2),

which implies

R2 ≤ I(Y2; X2)

since

R2 ≤ I(Y2; U2pb, X2) + I(Y1; U1pb) − I(U1pb; U2pb, X2) − R1

= I(Y2; X2) + I(Y2; U2pb|X2)I(U1pb;U2pb|X2)

≤ I(Y2; X2).
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Using time sharing we can show the achievability of all the region R1 ∩ R0. This means that

these rate points are are not in R0(U1pb, U2pb, X2) are in R2(U1pb, X2). But since R2(U1pb, X2)

is special case of R0(U1pb, U2pb, X2), we conclude that

R1(U1pb, U2pb, X2) = R0(U1pb, U2pb, X2),

This means is that decoder 2 must not decode U2pb if that imposes a more stringent rate

constraint than the decoding of U1pb at the intended decoder 1. For this reason U2pb can be

chosen so that U2pb = X2 without loss of generality in such case.

This shows that R1 is achievable and thus concludes the achievability proof

Remark 2.9.2. The achievable scheme of Equation 2.47 cannot be obtained as a special case

of any previously known achievable scheme but (51). The RV U2pb, as a broadcasted private

primary message from transmitter 1, appears in (50) as well. In this case in is possible to

reobtain the scheme of Equation 2.47 with a specific choice of the RV’s. Here the same message

is embedded in U2pb and the private primary message, this perform strictly worse than using

only U2pb.
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2.10 Capacity for the deterministic CIFC

In the deterministic CIFC both outputs are deterministic functions of the channel inputs,

that is

Y1 = Y1(X1, X2)

Y2 = Y2(X1, X2) (2.52)

This class of channels is a subclass of the semi-deterministic CIFC of Section 2.9, so we already

have capacity for this case. Here we now show the achievability of the outer bound of Theorem

2.5.1 when letting Y ′
2 = Y2, instead of the outer bound of Theorem 2.4.1 , “one auxiliary RV

outer bound”. The achievability also differs since only one scheme is needed to achieve the

outer bound.

Theorem 2.10.1. The capacity of the deterministic cognitive interference channel is

R1 ≤ H(Y1|X2) (2.53a)

R2 ≤ H(Y2) (2.53b)

R1 + R2 ≤ H(Y2) + H(Y1|Y2, X2) (2.53c)

union over all the distributions pX1,X2.

Proof. Outer bound
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The outer bound is obtained from Theorem 2.5.1 by the deterministic conditions in Equa-

tion 2.52.

Achievability

Consider the scheme in Equation 2.50 and let U1pb = Y1 , U2pb = Y2 to achieve the region

R1 ≤ H(Y1|X2) (2.54a)

R2 ≤ H(Y2) (2.54b)

R1 + R2 ≤ H(Y2; U,X2) + H(Y1|Y2, X2) (2.54c)

which corresponds to the outer bound in Equation 2.53.

2.11 Examples

The scheme that achieve capacity in the deterministic and semi-deterministic CIFC uses

the RV U2pb to perform Gel’an Pinsker binning to achieve the most general distribution among

(X2, U1pb, U2pb), but it carries no message. This feature of the capacity achieving scheme does

not provide a clear intuition on the role of this RV. For this reason we present two examples

of deterministic channels where the encoders can choose their respective codebooks in a way

that allows binning of the interference without rate splitting. To make these examples more
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Figure 4. The “asymmetric clipper” of Section 2.11.1.

interesting we choose them so that they do not fall into the category of the “very strong

interference regime” of Theorem 3.4.3 that in deterministic case reduces to

H(Y1|X2) ≤ H(Y2|X2)

H(Y2) ≤ H(Y1) ∀pX1,X2 (2.55)

Unfortunately, checking for the “very weak interference condition” of Theorem 2.4.5 is not

possible as no cardinality bound on U are available.
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2.11.1 Example I: the “Asymmetric Clipper”

Consider the channel in Figure 4. The input and output alphabets are X1 = Y1 = {0, 1, 2, 3}

and X2 = Y2 = {0, 1, 2, 3, 4, 5, 6, 7} and the input/output relationships are

Y1 = X1 ⊕4 X2, (2.56)

Y2 = 1{2,3}(X1) ⊕8 +X2, (2.57)

where 1A(x) = 1 if x ∈ A and zero otherwise and ⊕N is the addition operation over the ring

{1...N}. Also let U(S) be the uniform distribution over the set S.

First we show that the channel in Equation 2.57 does not fall in the “very strong interference”

class.

Consider the input distribution:

X2 ∼ U(1) =⇒ P [X1 = 0] = 1,

X2 ∼ U(X2).

For this input distribution, we have Y1 ∼ U(Y1) and Y2 ∼ U(Y2), so that

H(Y2) = log(|Y2|) = 3 > 2 = log(|Y1|) = H(Y1).

which contradicts the condition in Equation 2.55 for the “very strong interference” condition

to hold.
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For this channel we have:

H(Y1|X2) ≤ H(Y1) ≤ log(|Y1|) = 2

H(Y2) ≤ log(|Y2|) = 3

H(Y1|X2, Y2) ≤ H(X1|1{2,3}(X1)) ≤ 1.

where the last bound follows from the multiplicity of the solutions of an addition in a Galois

field. This shows that the outer bound in Theorem 2.10.1 is included in

R1 ≤ 2 (2.58a)

R2 ≤ 3 (2.58b)

R1 + R2 ≤ 4. (2.58c)

We now show that the region in Equation 2.58 indeed corresponds to the Theorem 2.10.1

when considering the union over all input distributions. The corner point (R1, R2) = (1, 3)

in Equation 2.58 is obtained in Theorem 2.10.1 with the input distribution:

X1 ∼ U({0, 1})

X2 ∼ U(X2).
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The corner point (R1, R2) = (2, 2) in Equation 2.58 is obtained in Theorem 2.10.1 considering

the input distribution:

X1 ∼ U(X1)

X2 ∼ U(X2).

Time sharing shows that the region of Equation 2.58 and the region Theorem 2.10.1 indeed

coincide.

We next show the achievability of the corner point (R1, R2) = (1, 3): consider the following

strategy:

• transmitter 2 sends symbols from X2 = {0...7} with uniform probability,

• transmitter 1 transmits [x1 − x2]2 (where the inverse of the difference operation is taken

over the ring G2);

• receiver 1 decodes ŵ1 = ⌊y2

2 ⌋;

• receiver 2 decodes ŵ2 = y2.

It can be verified by the inspection of Table III that the rate pair (R1, R2) = (1, 3) is indeed

achievable.

Now we show the achievability of the corner point (R1, R2) = (2, 2): consider the following

strategy:

• transmitter 2 sends symbols from x2 ∈ {0, 2, 4, 6} with uniform probability;

• transmitter 1 transmits [x1 − x2]4 (where the inverse of the difference operation is taken

over the ring G4);
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TABLE III

ACHIEVABILITY FOR (R1, R2) = (1, 3) IN EXAMPLE I.
ω1 ω2 x1 x2 y1 y2 ω̂1 ω̂2

0 0 0 0 0 0 0 0 0
1 0 1 1 0 2 2 1 0
2 0 2 0 2 2 2 2 0
3 0 3 1 3 2 0 3 0
4 0 4 0 4 0 0 4 0
5 0 5 1 5 0 2 5 0
6 0 6 0 6 0 2 6 0
7 0 7 1 7 0 0 7 0
8 1 0 1 0 0 1 0 1
9 1 1 0 0 2 1 1 1
10 1 2 1 2 2 3 2 1
11 1 3 0 3 2 3 3 1
12 1 4 1 4 0 1 4 1
13 1 5 0 5 0 1 5 1
14 1 6 1 6 0 3 6 1
15 1 7 0 7 0 3 7 1
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• receiver 1 decodes ŵ1 = y1;

• receiver 2 decodes ŵ2 = ⌊y2

2 ⌋.

It can be verified by the inspection of Table IV that the rate pair (R1, R2) = (2, 2) is indeed

achievable.

TABLE IV

ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (2, 2) IN EXAMPLE I.
ω1 ω2 x1 x2 y1 y2 ω̂1 ω̂2

0 0 0 0 0 0 0 0 0
1 0 1 2 2 0 3 0 1
2 0 2 0 4 0 4 0 2
3 0 3 2 6 0 7 0 3
4 1 0 1 0 1 0 1 0
5 1 1 3 2 1 3 1 1
6 1 2 1 4 1 4 1 2
7 1 3 3 6 1 7 1 3
8 2 0 2 0 2 0 2 0
9 2 1 0 2 2 2 2 1
10 2 2 2 4 2 5 2 2
11 2 3 0 6 2 6 2 3
12 3 0 3 0 3 1 3 0
13 3 1 1 2 3 2 3 1
14 3 2 3 4 3 5 3 2
15 3 3 1 6 3 6 3 3
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In this example we see how the two senders jointly design the codebook to achieve the outer

bound and in particular how the cognitive transmitter 1 adapts its strategy to the transmissions

from the primary pair so avoid interfering with it .

In achieving the point (R1, R2) = (1, 3), transmitter 2 sends as in a point to point channel to

achieve its maximum rate over the primary link. Transmitter 1 chooses its codewords so not to

interfere with the primary transmission. Only two codewords do not interfere: it alternatively

pick one of the two codewords to produce the desired channel output. For example when the

primary message is sending ω2 = 0 (line 0 and 8 in Table III) transmitter 1 can send either 1

or 2 without creating interference at receiver 2. On the other hand, these two values produce

a different output at receiver 1, allowing the transmission of 1 bit.

In achieving the point (R1, R2) = (2, 2), the primary receiver picks its codewords so as to

tolerate 1 unit of interference. Transmitter 1 again chooses its input codewords in order to

create at most 1 unit of interference at the primary decoder. By adapting its transmission

to the primary symbol, the cognitive transmitter is able to always find four such codewords.

It interesting to notice the tension at transmitter 1 between the interference it creates at the

primary decoder and its own rate. There is an optimal trade off between these two quantities

that is achieved by carefully picking the codewords at the primary transmitter. For example

when the primary receiver is sending ω2 = 0, lines 0, 4, 8 and 12, transmitter 1 can send

x1 ∈ {0, 1, 2, 3} and create at most 1 bit of interference at receiver 2. Each of these for values

produces a different output at receiver 1], thus allowing the transmission of 2 bits.
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Figure 5. The “symmetric clipper” of Section 2.11.2

2.11.2 Example II: the “Symmetric Clipper”

Consider the now channel in Figure 5. The channel input and output alphabets are

X1 = {0, 1, 2, 3} = Y2, X2 ∈ {0, 1, 2}, and Y1 = {0, 1}. The input/output relationships are:

Y1 = 1{1,2}(X1) ⊕2 1{1,2}(X2)

Y2 = 1{0,1}(X1) ⊕ X2
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TABLE V

THE INPUT DISTRIBUTION FOR EXAMPLE II
X2 X1 1 2 3 4
0 1/8 1/8 1/8 1/8 1/2
1 1/8 1/8 0 0 1/4
2 1/8 1/8 0 0 1/4

3/8 3/8 1/8 1/8

Consider the input distribution: Consider the input distribution:

P [X1 = 3] = 1,

X2 ∼ U({1, 2}),

in this case H(Y1) = 0 and H(Y2) = 1.This shows that there exists at least one input distri-

bution for which H(Y2) > H(Y1) and thus this channel is not is the “very strong interference”

regime. The outer bound of Theorem 2.10.1 is achieved here by a single input distribution

pX1,X2 : consider the distribution in Table V. This distribution produce H(Y1) = 1 = log2(|Y1|)

and H(Y2) = 2 = log(|Y2|) and clearly no possible larger outer bound can exists given the

output cardinality. We therefore conclude that the region of Theorem 2.10.1 can be rewritten

as:

R1 ≤ 1

R2 ≤ 2.
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TABLE VI

ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (1, 2) IN EXAMPLE II.
ω1 ω2 x1 x2 v1 v2 y1 y2

0 0 0 3 0 0 0 0 0
1 0 1 0 0 1 0 0 1
2 0 2 1 1 1 1 0 2
3 0 3 1 2 1 1 0 3
4 1 0 2 0 0 0 1 0
5 1 1 1 0 1 0 1 1
6 1 2 0 1 1 1 1 2
7 1 3 0 2 1 1 1 3

This region can be shown achievable using the transmission scheme described in Table VI.

The decoding is simply ω̂i = Yi, i ∈ {1, 2}. This transmission scheme achieves the proposed

outer bound, thus showing capacity. The transmission scheme can be described as follows

• encoder 2 transmits [x2 − 1]+,

• encoder 1 transmits the value X1 that simultaneously makes Y1 = ω1 and Y2 = ω2. For

each ω1 and ω2 such value always exists because X2 has only three possible values,

• receivers 1 and 2 decode ω̂1 = Y1 and ω̂2 = Y2.

This example is particularly interesting since both decoders obtain the transmitted symbol

without suffering any interference from the other user. Here cognition allows the simultaneous

cancelation of the interference at both decoders. Encoder 2 has only three codewords and

relies on transmitter 1 to achieve its full rate of R2 = 2. In fact encoder 1 is able to design is

codebooks to transmit two codewords for its decoder and still contribute to the rate of primary
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user by making the codewords corresponding to ω2 = {2, 3} distinguishable at the cognitive

decoder.

This feature of the capacity achieving scheme is really intriguing. The primary transmitter

needs the support of the cognitive transmitter to achieve R2 = 2 since its input alphabet has

cardinality three. The transmitters optimally design their codebooks so to make the effect X1

on both outputs the desired one.

For example consider the transmission of ω2 = 2 or 3, lines 2, 3, 6 and 7. In this case

transmitter 1 sends x1 = 0 or x1 = 1 to simultaneously influence both channel output so that

both decoders receive the desired symbol. This simultaneous cancelation can be implemental

given the channel deterministic nature and the extra knowledge at the cognitive transmitter.



CHAPTER 3

THE GAUSSIAN COGNITIVE INTERFERENCE CHANNEL

The content of this chapter appears in the Proceedings of ITW2010 in Cairo,

Allerton conference 2010, ICC2011 and is submitted to the IEEE Transaction of

Information Theory

3.1 Main Contributions

In this chapter we focus on the Gaussian cognitive interference channel in a comprehensive

and comparative manner. In particular, our main contributions are:

1. We evaluate the outer bound of Th. 2.5.1 for the Gaussian cognitive interference channel.

We show that it unifies the previously proposed outer bounds for the “weak interference”

and the “strong interference” regimes of (26) and (25), respectively.

2. We derive a new outer bound based on the broadcast channel and inspired by (14). The

capacity region of the Gaussian MIMO (multi input multi output antenna) broadcast

channel with degraded message sets is an outer bound for a channel in “strong interfer-

ence”. Interestingly, we show that the new bound may be strictly tighter than the “strong

interference” outer bound of (25).

3. Derive new outer bounds by transformation / inclusion into channels with known capacity.

We determine the conditions under which the capacity region of a Gaussian channel is

101
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contained in that of a channel with known capacity. The capacity of the latter channel

thus provides an outer bound for the former.

4. We specialize the largest known inner bound of Th. 2.6.1 to the Gaussian channel. We

utilize it as a unified framework to derive and compare various achievable schemes in this

and prior work.

5. We prove a new capacity result for the “primary decodes cognitive” regime. This regime

is a subset of the “strong interference” regime that is not included in the “very strong

interference” regime for which capacity was known (24). In this regime capacity is achieved

by having the primary receiver decode the message of the cognitive user in addition to its

own message.

6. We prove a new capacity result for the S-channel, a channel in which the primary trans-

mission does not interfere with the cognitive receiver. For this channel we show the

achievability of the outer bound based on the capacity of the broadcast channel with

degraded message sets.

7. We show capacity to within half a bit/s/Hz per real dimension and to within a factor

two regardless of channel parameters. These two results characterize the capacity region

of the Gaussian channel both at high and low SNR, respectively. To this end, we use a

transmission scheme inspired by the capacity achieving scheme for the semi-deterministic

cognitive interference channel of Th. 2.9.1 where capacity is achieved by having the

cognitive transmitter perform partial interference pre-coding for both decoders. The
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multiplicative gap is shown by using a simple time sharing argument between achievable

points.

8. We provide insights on the capacity region of the Gaussian channel for the regimes in

which capacity is still unknown. We do so by showing that very simple transmission

strategies can achieve capacity to within a constant gap for large sets of parameters. We

conclude by showing that a constant gap result may alternatively be proved by trading off

interference pre-coding at the cognitive encoder and interference decoding at the primary

receiver.

3.2 Organization

The rest of the chapter is organized as follows. Section 3.3 formally defines the cognitive

interference channel model and summarizes known results for the Gaussian channel. Section 3.5

presents new outer bounds for the Gaussian channel. Section 3.6 lists the achievable schemes

used in the rest of the chapter and shows how they may be obtained from the largest known inner

bound of Chapter 2. Section 3.7 proves the two new capacity results. Section 3.8 characterizes

the capacity of the Gaussian channel to within half a bit/s/Hz per real dimension and to within

a factor two. Section 3.9 shows some relevant numerical results.
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3.3 Gaussian channel model and known results

3.3.1 Gaussian CIFC

A Gaussian CIFC (G-CIFC) in standard form is described by the input/output relationship

Y1 = X1 + aX2 + Z1,

Y2 = |b|X1 + X2 + Z2,

where the channel gains a and b are complex-valued, constant, and known to all terminals, the

channel inputs are subject to the power constraint

E[|Xi|2] ≤ Pi, Pi ∈ R+, i ∈ {1, 2},

and the channel noise Zi ∼ NC(0, 1), i ∈ {1, 2}. Since the capacity only depends on the

output conditional marginals, the correlation coefficient of Z1 and Z2 is irrelevant. A graphical

representation of a G-CIFC is found in Figure 6.

A G-CIFC is said to be a:

• Z-channel if |b| = 0; we refer to it as a Z-G-CIFC. In this case the primary decoder does

not experience interference from the cognitive transmitter. Capacity is trivially given by

R1 ≤ C(P1), R2 ≤ C(P2).
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• S-channel if a = 0; we refer to it as a S-G-CIFC. In this channel the cognitive decoder

does not experience interference from the primary transmitter. For this channel capacity

is only known for |b| ≤ 1 (26).

• Degraded channel if a|b| = 1. In this case one channel output is a degraded version of

the other. In particular, for |b| > 1, Y1 is a degraded version of Y2 since

Y1 = X1 +
1
|b|

X2 + Z1 ∼ 1
|b|

Y2 + Z0,

for Z0 ∼ NC(0, |b|2 − 1) independent of everything else. Similarly, when |b| ≤ 1, Y2 is a

degraded version of Y1. Capacity is known in the case |b| ≤ 1 (26).

3.4 The G-CIFC in standard form

A general G-CIFC has outputs

Ỹ1 = h11X̃1 + h12X̃2 + Z̃1

Ỹ2 = h21X̃1 + h22X̃2 + Z̃2

where

Z̃i ∼ NC(0, σ2
i ), σ2

i > 0, i ∈ {1, 2},

and the inputs are subject to the power constraint

E[|X̃i|2] ≤ P̃i, P̃i ≥ 0, i ∈ {1, 2}.
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Figure 6. The Gaussian cognitive interference channel (G-CIFC).

When h11 ̸= 0 and h22 ̸= 0 , we may scale each channel output by the standard deviation

(assumed strictly positive) of the corresponding additive Gaussian noise and change the phase

as

Y1 , Ỹ1

σ1

Y2 , Ỹ2

σ2
ej(∠h11−∠h12)

X1 , h11

σ1
X̃1 such that E[|X1|2] ≤ P1 , |h11|2

σ2
1

P̃1

X2 , h22

σ2
ej(∠h11−∠h12)X̃2 such that E[|X2|2] ≤ P2 , |h22|2

σ2
2

P̃2

a , h12

σ1

σ2

h22
ej(−∠h11+∠h12) ∈ C

b , |h21|
σ2

σ1

|h11|
∈ R+, (3.1)
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to obtain the equivalent channel outputs have additive noise of unit variance, unit gain on the

direct link, as claimed in Section 3.3.1. To remind the reader that b is always real-valued and

non-negative we use the notation |b|.

When h22 = 0, transmitter 2 can only create interference at receiver 1 and thus the channel

reduces to a BC where the cognitive transmitter is sending both messages to both receivers.

When h22 = 0 in Equation 3.1, we have a = ∞ and P2 = 0 corresponds to the scenario above;

the same in not true when h11 = 0.

If h11 = 0, the channel reduces to a MISO, point-to-point channel since decoder 1 can only

receive interference from transmitter 2. For h11 = 0 the transformation in Equation 3.1 does

not yield a MISO channel, since in this case P1 = 0 and b = ∞. In (58, Sec. II.B), this fact is

overlooked and the transformation in Equation 3.1 is considered to be without loss of generality.

Note that the equivalent transformation in standard form for a classical interference channel

does not require h11 > 0, since the transmitters cannot cooperate.

3.4.1 Known results for the G-CIFC

The capacity of the G-IFC is not known in general. However several capacity results exist,

as summarized next.

Theorem 3.4.1. “Weak interference” capacity of (26, Lemma 3.6) and (27, Th.

4.1). If

|b| ≤ 1, (the “weak interference” regime/condition) (3.2)
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the capacity of the G-CIFC is:

R1 ≤ C(αP1), (3.3a)

R2 ≤ C
(
|b|2P1 + P2 + 2

√
ᾱ|b|2P1P2

)
− C(|b|2αP1), (3.3b)

taken over the union of all α ∈ [0, 1].

Theorem 3.4.2. “Strong interference” outer bound of (25, Th. 4). When

|b| > 1, (the “strong interference” regime/condition) (3.4)

the capacity region of the G-CIFC is included in the region R(SI) defined as:

R1 ≤ C(αP1), (3.5a)

R1 + R2 ≤ C
(
|b|2P1 + P2 + 2

√
ᾱ|b|2P1P2

)
, (3.5b)

taken over the union of all α ∈ [0, 1].

Theorem 3.4.3. “Very strong interference” capacity of (24, Th. 6) extended to

complex-valued channels. When

(|a|2 − 1)P2 − (|b|2 − 1)P1 − 2
∣∣a − |b|

∣∣√P1P2 ≥ 0,

and |b| > 1 (“very strong interference” regime/condition) (3.6)
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the outer bound R(SI) of Th. 3.4.2 is tight.

Proof. For a complex-valued G-CIFC with |b| > 1, the outer bound of Th. 3.4.2 is achievable

by the superposition-only (scheme (D) of Section 3.6.4) if I(Y1; X1, X2) ≥ I(Y2; X1, X2) for all

input distributions (24), that is, if

E[|Y1|2] − E[|Y2|2] = (|a|2 − 1)P2 − (|b|2 − 1)P1+

+ 2
√

P1P2(Re{a∗ρ} − |b|Re{ρ}) ≥ 0, ∀|ρ| ≤ 1. (3.7)

Let ρ = |ρ|ejϕρ and a = |a|ejϕa . We have

Re{a∗ρ} − |b|Re{ρ} = |ρ||a| cos(ϕρ − ϕa) − |ρ||b| cos(ϕρ)

= |ρ|
[
|a| cos(ϕa) − |b|

]
cos(ϕρ) + |ρ|

[
|a| sin(ϕa)

]
sin(ϕρ)

= |ρ|
√

(
[
|a| cos(ϕa) − |b|

]
)2 +

[
|a| sin(ϕa)

]2
cos(ϕ)

=
∣∣a − |b|

∣∣ · |ρ| cos(ϕ),

for some angle ϕ. The condition in Equation 3.7 is thus verified for all |ρ| cos(ϕ) ∈ [−1, +1] if

it is verified for |ρ| cos(ϕ) = −1.

A plot of the capacity results of Th. 3.4.1 and Th. 3.4.3 for a ∈ R and P1 = P2 is depicted

in Figure 7. The channel gains a and |b| for which capacity is known are shaded, while those

for which capacity is unknown are white.
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Figure 7. A representation of the capacity results Th. 3.4.1 and Th. 3.4.3 for P1 = P2 and
(a, |b|) ∈ [−5, 5] × [0, 5]. The regions for which capacity is known are shaded, while those for

which capacity is unknown are white.

3.5 Outer bounds

In this section we prove several outer bounds:

1. First we evaluate the outer bound of Th. 2.5.1 for the Gaussian channel and show that

it coincides with the outer bounds of Th. 3.4.1 and Th. 3.4.2 in “weak” and “strong

interference” respectively.

2. Then we tighten it by using the observation of (14) that the capacity region of a G-CIFC

is included into the capacity region of the Gaussian MIMO BC obtained by allowing

full cooperation among the transmitters. We further tighten the outer bound in “strong
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interference”, where we show that the capacity region of a Gaussian broadcast channel

with degraded message sets forms an outer bound to the capacity of the G-CIFC.

3. Finally, we propose outer bounds based on enhancing the original channel so as to trans-

form it into a channel for which capacity is known.

3.5.1 A unifying framework for Th. 3.4.1 and Th. 3.4.2

Our objective is to obtain an outer bound for the G-CIFC with |b| > 1 that improves on

the “strong interference” outer bound of Th. 3.4.2. Although the following theorem does not

result in such a bound, it is of interest because it provides a simple unifying framework for

Th. 3.4.1 and Th. 3.4.2. The proof of Th. 3.4.1 and the proof of Th. 3.4.2 use very different

techniques. On the one hand, the bound in Th. 3.4.1 is valid for a general channel under the

“weak interference” condition in (26, Th. 3.7) and is inspired by the converse for “less noisy

BC”. On the other hand, the bound in Th. 3.4.2 is valid for Gaussian channels with “strong

interference” only and is inspired by the converse of “strong interference IFC”. We will show

next that both results may be derived within the framework proposed in Chapter 2. The proof

of Th. 2.5.1 uses the argument originally devised by Sato for the BC (59) that, for channels

without receiver cooperation, the capacity only depends on the output conditional marginals.
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Theorem 3.5.1. Unifying outer bound. The capacity region of the G-CIFC is contained in

the region

R1 ≤ C (αP1) , (3.8a)

R2 ≤ C
(
|b|2P1 + P2 + 2

√
ᾱ|b|2P1P2

)
, (3.8b)

R1 + R2 ≤ C
(
|b|2ᾱP1 + P2 + 2

√
ᾱ|b|2P1P2

)
+ [C (αP1) − C

(
|b|2αP1

)
]+ (3.8c)

taken over the union of all α ∈ [0, 1]. In “strong interference” (|b| > 1) the region in Equa-

tion 3.8 reduces to Th. 3.4.2, and in “weak interference” (|b| ≤ 1) to Th. 3.4.1.

Proof. In Th. 2.5.1, we showed that the capacity of a general CIFC is contained in the region

R1 ≤ I(Y1;X1|X2), (3.9a)

R2 ≤ I(X1, X2; Y2), (3.9b)

R1 + R2 ≤ I(X1, X2; Y2) + I(Y1; X1|Y ′
2, X2), (3.9c)

taken over the union of all joint distributions PX1,X2 and where Y ′
2 has the same conditional

marginal distribution as Y2, i.e., PY ′
2|X1,X2

= PY2|X1,X2
. The result in Equation 3.9 specialized
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to the G-CIFC amounts to optimizing the correlation coefficient over the Gaussian additive

noises, that is, optimizing with respect to γ : |γ| ≤ 1 in

 Z1

Z2

 ∼ NC

0,

 1 γ

γ∗ 1


 .

First we show that a proper-complex Gaussian input exhausts the region in Equation 3.9.

For any α ∈ [0, 1], let S be a covariance matrix defined as

S ,

 P1 ρ
√

P1 P2

ρ∗
√

P1 P2 P2

 : ρ =
√

1 − α ejθ, θ ∈ R, (3.10)

and let (X1G, X2G) ∼ NC (0,S). By using the “Gaussian maximizes entropy” principle (see also

(60, Eq.(3.29))), we conclude that for a given input covariance constraint S in Equation 3.10

for PX1,X2 , the regime in Equation 3.9c is upper bounded by

Equation 3.9a ≤ I(Y1;X1G|X2G) = Equation 3.8a, (3.11)

Equation 3.9b ≤ I(Y2;X1G, X2G)

= log(1 + P2 + |b|2P1 + 2|b|Re{ρ}
√

P1 P2) ≤ Equation 3.8b, (3.12)

Equation 3.9c ≤ I(Y2;X1G, X2G) + I(Y1;X1G|Y2, X2G)

≤ Equation 3.8b + log

1 + (1 − |ρ|2)P1
|b|2 + 1 − 2|b|Re{γ}

1 − |γ|2
1 + |b|2(1 − |ρ|2)P1

 . (3.13)
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Since the bound in Equation 3.13 is valid for any |γ| ≤ 1, the minimizing γ is

argmin
γ: |γ|≤1

|b|2 + 1 − 2|b|Re{γ}
1 − |γ|2

= min
{
|b|, 1

|b|

}
. (3.14)

After substituting the optimal value of γ given by Equation 3.14 in Equation 3.13 we obtain

that the sum-rate in Equation 3.9c is bounded by Equation 3.8c. This shows that a Gaussian

input is optimal in Equation 3.9 and that the worst conditional marginal is such that one of

Y1|X2 and Y2|X2 is the degraded version of the other.

Finally, in “strong interference” the region in Equation 3.8 reduces to Th. 3.4.2 because

the bound in Equation 3.8b is redundant due to Equation 3.8c, while in “weak interference”

it reduces to Th. 3.4.1 because the closure of the region is determined by the rates pairs for

which Equation 3.8a and Equation 3.8c are met with equality as argued in (61, Ex. 4.3).

3.5.2 BC- based outer bounds

In this subsection we propose an outer bound that is tighter than the “strong interference”

outer bound of Th. 3.4.2 in the “strong interference” regime. The following observation is

key: if we provide the primary transmitter with the cognitive message, the G-CIFC becomes a

Gaussian MIMO BC (with two antennas at the transmitter and one antenna at each receiver)

where the input is subject to a per-antenna power constraint, as originally used in (14, page

1819). Thus, our proposed outer bound, valid for a fully general C-IFC is:
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Theorem 3.5.2. BC-based outer bound. The capacity of a general CIFC is contained in

the following region

R(BC−PR) ∩ R(2.5.1), (3.15)

where R(BC−PR) is the capacity region (or an outer bound) for the BC with private rates only

obtained by allowing the transmitters to fully cooperate is the outer bound in Th. 2.5.1 given in

Equation 3.9.

Proof. The theorem follows from the fact that allowing transmitter cooperation enlarges the

capacity region of the CIFC and results in a BC.

The closed form expression of R(BC−PR) was obtained in (62) and is presented here for

completeness.

Consider an input covariance matrix defined as follows

S ,

 P1 ρ
√

P1 P2

ρ∗
√

P1 P2 P2

 : ρ =
√

1 − α ejθ, θ ∈ R, α ∈ [0, 1]. (3.16)

The capacity region of a Gaussian MIMO BC with private rates only with a per-antenna

power constraint is given by (62)

R(BC−PR) = CH
∪
S

R(BC−PR)(S)
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where CH denotes the convex-hull operation,
∪

S denotes the union over all input covariance

matrices S that satisfy the per-antenna power constraint, and where

R(BC−PR)(S) =
∪

u∈{1,2}

R(DPC u)(S)

where R(DPC u)(S) is the DPC region for the encoding order where user u is pre-coded against

the interference created by the other user at its intended receiver, which is given by

R(DPC u)(S) =
∪

0≼B1, 0≼B2, B1+B2=S

R(DPC u)(B1,B2), u ∈ {1, 2},

and where, for

B1 =

 α1P1 ρ1

√
α1P1 α2P2

ρ∗1
√

α1P1 α2P2 α2P2

 , B2 =

 ᾱ1P1 ρ2

√
ᾱ1P1 ᾱ2P2

ρ∗2
√

ᾱ1P1 ᾱ2P2 ᾱ2P2

 ,

with

(α1, α2, |ρ1|, |ρ2|) ∈ [0, 1]4 : ρ1
√

α1 α2 + ρ2
√

ᾱ1 ᾱ2 = ρ,

the region R(DPC 1)(B1,B2) is given by

R1 ≤ C(α1P1 + |a|2α2P2 + 2Re{a∗ρ1}
√

α1α2P1P2), (3.17a)

R2 ≤ C

(
ᾱ1|b|2P1 + ᾱ2P2 + 2Re{ρ2}

√
ᾱ1ᾱ2|b|2P1P2

1 + |b|2α1P1 + α2P2 + 2Re{ρ1}
√

α1α2|b|2P1P2

)
, (3.17b)
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and R(DPC 2)(B1,B2) is given by

R1 ≤ C

(
α1P1 + |a|2α2P2 + 2Re{a∗ρ1}

√
α1α2P1P2

1 + ᾱ1P1 + |a|2ᾱ2P2 + 2Re{a∗ρ2}
√

ᾱ1ᾱ2P1P2

)
, (3.18a)

R2 ≤ C(ᾱ1|b|2P1 + ᾱ2P2 + 2Re{ρ2}
√

ᾱ1ᾱ2|b|2P1P2). (3.18b)

The quantity αu, u ∈ {1, 2}, represents the fraction of power Pu used to send the cognitive

message W1 on antenna u. The requirement (α1, α2) ∈ [0, 1]2 guarantees that the per-antenna

power constraints are verified.

Consider the G-CIFC with “strong interference” |b| > 1 and where the primary user is

silent, i.e., P2 = 0. This channel is equivalent to a (degraded) BC with input X1 whose

capacity C(a, |b|, P1, 0) is given by (63)

R1 ≤ C

(
αP1

ᾱP1 + 1

)
,

R2 ≤ C(α|b|2P1),

taken over the union of all α ∈ [0, 1]. For P2 = 0, the “strong interference” outer bound of Th.

3.4.2 reduces to

R1 ≤ C(P1),

R1 + R2 ≤ C(|b|2P1).
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Figure 8. The “strong interference” outer bound of Th. 3.4.2 and the capacity region of the
G-CIFC with P2 = 0 and |b| > 1 (when the channel reduces to degraded BC).

These two regions are shown in Figure 8 where it is clear that the “strong interference” outer

bound of Th. 3.4.2 fully contains the outer bound of the BC of Lemma 3.8.2. The two regions

only coincide at the two Pareto optimal points A and B in Equation 3.56.

Th. 3.5.2 is valid for a general channel. It may be further tightened for the Gaussian channel

in the “strong interference” regime. As previously noted in (25, Sec. 6.1), in the “strong

interference” regime there is no loss of optimality in having the primary receiver decode the

cognitive message in addition to its own message. Indeed, after decoding W2, receiver 2 can

reconstruct XN
2 (W2) and compute the following estimate of the receiver 1 output

Ỹ N
1 , Y N

2 − XN
2

|b|
+ aXN

2 +

√
1 − 1

|b|2
ZN

0 ∼ Y N
1 , (3.19)
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where ZN
0 ∼ NC(0, I) and independent of everything else. Hence, if receiver 1 can decode W1

from Y N
1 , so can receiver 2 from Ỹ N

1 . For this reason the capacity region of the G-CIFC for

|b| > 1 is unchanged if receiver 2 is required to decoded both messages. If we further allow

the two transmitters to fully cooperate, the resulting channel is a Gaussian MIMO BC with

degraded message sets, with per-antenna power constraint, where message W2 is to be decoded

at receiver 2 only and message W1 at both receivers. This implies that the bound in Th. 3.5.2

may be tightened for G-CIFC with |b| > 1 by using the capacity of the Gaussian MIMO BC

with degraded message sets (BC-DMS) instead of the capacity of the Gaussian MIMO BC with

private rates only (BC-PR):

Theorem 3.5.3. BC-DMS-based outer bound. The capacity of a G-CIFC in “strong in-

terference” (|b| > 1) satisfies

C(a, |b|, P1, P2) ⊆ R(BC−DMS) ∩ R(SI), (3.20)

where R(BC−DMS) is the capacity of the MIMO BC with degraded message sets determined in

(64; 62) and R(SI) is the “strong interference” outer bound of Th. 3.4.2.

Remark 3.5.4. The capacity of the of the general BC-DMS is derived in (64) and it is an outer

bound for a general CIFC in “strong interference”. This observation was also pointed out in

the independent work of (65). It is possible to obtain the same outer bound by loosening the

outer bound in (25, Th. 4), in particular by dropping (25, eq. (33)) and letting U = [V, U1].

Our contribution is to determine a simpler expression for the capacity region of the Gaussian
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MIMO BC-DMS, in particular by proving the optimality of Gaussian inputs in the region of

(64).

The analytical evaluation of the outer bound region in Equation 3.15 of Th. 3.5.2 (or

in Equation 3.20 of Th. 3.5.3) is quite involved in general. For the special cases of degraded

G-CIFC and of S-G-CIFC a closed form expression may be obtained as follows.

Corollary 3.5.5. BC-based outer bound for the degraded G-CIFC. For a degraded G-

CIFC with 1/a = |b| ≥ 1, Th. 3.5.2 and Th. 3.5.3 coincide and reduce to

R1 ≤ C (αP1) , (3.21a)

R2 ≤ C

(
P2 + ᾱ|b|2P1 + 2

√
|b|2P1P2

1 + αP1

)
, (3.21b)

R1 + R2 ≤ C
(
P2 + |b|2P1 + 2

√
ᾱ|b|2P1P2

)
. (3.21c)

Moreover, the R2-bound from the MIMO BC capacity region (in Equation 3.21b) is more

stringent than the R2-bound from the “strong interference” outer bound (from the difference

of Equation 3.21c and Equation 3.21a) if

|b| ≥
√

P2

P1
+
√

1 +
P2

P1
.
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Proof. When allowing full transmitter cooperation for a channel with a|b| = 1 and |b| > 1, we

obtain an equivalent degraded BC with input Xeq = |b|X1 + X2 and outputs

Y2 = (|b|X1 + X2) + Z2 = Xeq + Z2,

|b|Y1 = (|b|X1 + X2) + |b|Z1 ∼ Y2 +
√

|b|2 − 1 Z0,

with Z0 ∼ NC(0, 1) and independent of everything else. The input of the equivalent BC is

subject to the power constraint

E[|Xeq|2] ≤ (
√

|b|2P1 +
√

P2)2 , Peq.

For this order of degradedness among the users, the capacity region of the degraded BC with pri-

vate rates equals the capacity with degraded message sets. In general R(BC−DMS) ⊆ R(BC−PR),

but since here Y1 is a degraded version of Y2, decoder 2 can decode the message of decoder 1

without imposing any rate penalty to user 1, thus R(BC−PR) is achievable. This implies

R(BC−DMS) = R(BC−PR).

The capacity region of the equivalent BC is (63)

R1 ≤ R
(BC−deg)
1 (α′) = C

(
α′Peq

(1 − α′)Peq + |b|2

)
, (3.22a)

R2 ≤ R
(BC−deg)
2 (α′) = C

(
(1 − α′)Peq

)
, (3.22b)
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taken over the union of all α′ ∈ [0, 1], i.e., that is ρ1 = ρ2 = 1, α1 = α2 = α′ and R(BC−PR) =

R(DPC 2) in Equation 3.18.

To intersect the region in Equation 3.22 with the “strong interference” outer bound of Th.

3.4.2 we equate the R1-bounds in Equation 3.22a and Equation 3.5a to obtain

α′ =
αP1

1 + αP1

(
1 +

|b|2

(
√

|b|2P1 +
√

P2)2

)
. (3.23)

Notice that α′ in Equation 3.23 satisfies α′ ≤ 1 (the maximum value of 1 is obtained for P2 = 0

and α = 1). By substituting α′ from Equation 3.23 in Equation 3.22b, we obtain the bound

in Equation 3.21b.

The BC-based outer bound is more stringent than the “strong interference” outer bound if

R
(BC−deg)
1 (α) + R

(BC−deg)
2 (α) ≤ R(SI)

sum (α) ∀α ∈ [0, 1]

⇐⇒ αP1 + P2 + (1 − α)|b|2P1 + 2
√

|b|2P1P2 ≤ P2 + |b|2P1 + 2
√

ᾱ|b|2P1P2 ∀α ∈ [0, 1]

⇐⇒ 2
√
|b|2P1P2(1 −

√
ᾱ) ≤ αP1(|b|2 − 1) ∀α ∈ [0, 1]

⇐⇒ 2

√
|b|2P1P2

P1(|b|2 − 1)
≤ 1 +

√
ᾱ ∀α ∈ [0, 1]

(
since α = (1 −

√
ᾱ)(1 +

√
ᾱ)
)

⇐⇒ 2

√
|b|2P1P2

P1(|b|2 − 1)
≤ min

ᾱ∈[0,1]
{1 +

√
ᾱ} = 1

⇐⇒ 1 +
P2

P1
≤

(
|b| −

√
P2

P1

)2

⇐⇒ |b| ≥
√

1 +
P2

P1
+
√

P2

P1
,

as claimed.
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Remark 3.5.6. The capacity of the equivalent degraded BC may be achieved both by using

superposition coding and binning. An achievable scheme inspired by the degraded BC and

employing superposition coding is scheme (E) with λ = 0. An achievable scheme inspired by

the degraded BC and employing binnig coding is scheme (B). Both schemes achieve the outer

bound only in point A in Equation 3.56a. The capacity region of the degraded CIFC in therefore

unknown in general it remains an interesting open problem.

Corollary 3.5.7. BC-DMS-based outer bound for the S-G-CIFC. For a S-G-CIFC with

a = 0 and |b| ≥ 1 the outer bound of Th. 3.5.3 is contained in the region

R1 ≤ C (αP1) , (3.24a)

R2 ≤ C

P2 +
|b|2P1ᾱ

1 + αP1
+ 2

√
ᾱ|b|2P1P2

1 + αP1

 , (3.24b)

R1 + R2 ≤ C
(
P2 + |b|2P1 + 2

√
ᾱ|b|2P1P2

)
. (3.24c)

Moreover, the R2-bound from the MIMO BC capacity region (from Equation 3.24b) is more

stringent than the R2-bound from the “strong interference” outer bound (from the difference

of Equation 3.24c and Equation 3.24a) if

|b| ≥
√

P2 + 1.
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Proof. To establish the result in Corollary 3.5.7 we proceed as follows: first we prove that the

capacity region of the Gaussian BC-DMS may be obtained form the region in (64) by considering

Gaussian inputs and auxiliary RV. Successively we perform a partial optimization of the region

in (64) in the Gaussian case and obtain a looser outer bound that may be expressed as a function

of a single parameter. Finally we intersect this outer bound with the “strong interference” outer

bound of Equation 3.5 to obtain the expression in Equation 3.24.

The capacity region of the general BC-DMS is found in (64) and is expressed as the union

over all possible distributions of the input and one auxiliary RV. A closed form expression of the

capacity region of the Gaussian BC-DMS is derived in (66) and is expressed as the intersection

of the capacity region of a general BC and an additional sum rate constraint. We derive another

simpler expression of the capacity region of the Gaussian BC-DMS and we do so by showing

that we may restrict the union in (64) over all Gaussian inputs and auxiliary RV.

Consider the BC-DMS defined as:

Yi = H iX + Zi ∀ i ∈ [1, 2] (3.25)

where:

• X is a real valued input vector of size n × 1 subject to the second moment constraint

Cov[X] = KX ≼ S for some S ≽ 0,

• Yi is a real valued output vector of size mi × 1 received by user i ∈ [1, 2],
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• H i is a fixed real valued gain matrix imposed on user i ∈ [1, 2]. This is a matrix of size

mi × n,

• Zi is a real valued Gaussian random vector with zero mean and covariance matrix Cov[Zi] =

KZ ≻ 0.

As for the BC of (66), we consider real valued channels; the extension to complex valued

channels is easily obtained by doubling the real dimensions. We first derive the capacity of a

Gaussian BC-DMS for the case where H i is square and invertible, we than argue that the case

for a general H i may be obtained by series of channel transformations originally devised for

the BC in (62).

Theorem 3.5.8. The capacity region of the Gaussian BC-DMS in Equation 3.25 is

R1 ≤ I(U ;Y1), (3.26a)

R2 ≤ I(X; Y2|U), (3.26b)

R1 + R2 ≤ I(X; Y2). (3.26c)

taken over the union of all Gaussian U and X vectors of size n such that KX ≼ S.

Proof. The region in Equation 3.26 was originally obtained in (64) for a general BC-DMS but

considering the union over any distribution PUX . To prove the theorem we need to show that

only Gaussian U and X need to be considered.
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First, we notice that Equation 3.26c is always maximized by having X Gaussian by the

“Gaussian maximizes entropy” of (67). Since Equation 3.26c is maximized by Gaussian inputs,

we have to show that the region obtained by considering Equation 3.26a and Equation 3.26b only

is optimized by Gaussian inputs as well. To this end we write the region with Equation 3.26a

and Equation 3.26b as

Equation 3.26a + (1 − µ)Equation 3.26b = max
PX|U :Cov[X]≼S

µI(U ; Y1) + (1 − µ)I(X; Y2|U)

≤ µh(H1XG + Z1) − (1 − µ)h(Z2)+

(1 − µ) max
PX|U : Cov[X|U ]≼S

(
h(H1X + Z1|U) − µ

(1 − µ)
h(H2X + Z2|U)

)
, (3.27)

for any µ ∈ [1/2, 1] and where XG is a Gaussian vector with KX ≼ S.

We need not consider µ ∈ [0, 1/2] because the region in Equation 3.26 is convex and con-

tained in the triangular region

R1, R2 ≥ 0, (3.28a)

R1 + R2 ≤ I(H2XG + Z2; XG), (3.28b)

see (64).

For these reasons, the region in Equation 3.26 cannot contain any rate point with tangent

greater than −1 and thus there is no loss of generality in restricting µ in Equation 3.31 to the

interval [1/2, 1].
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We now show that solution of the optimization problem

maxPX|U : Cov[X|U ]≼S, µ∈[1/2,1] h(H1X + Z1|U) − µ
1−µh(H2X + Z2|U).

must be Gaussian by using the extremal inequality of (68). We first focus on channels where

H i, i ∈ [1, 2] is square and invertible, then show how this result may be used to establish a

general channel using the perturbation techniques of (62).

If H i, i ∈ [1, 2], are square we may write

max
PX|U : Cov[X|U ]≼S

h(H1X + Z1|U) − µ

(1 − µ)
h(H2X + Z2|U)

=
µ

(1 − µ)
(log |H2|)−1 − (log |H1|)−1

+ max
PX|U : Cov[X|U ]≼S

h(X + H−1
1 Z1|U) − µ

(1 − µ)
h(X + H−1

2 Z2|U). (3.29)

Th. 8 in (68) grants that the solution of the optimization problem in Equation 3.32 is Gaussian

since µ/(1 − µ) > 1 for µ ∈ [0, 1/2]. Since we have established that both Equation 3.31 and

Equation 3.26c are maximized by Gaussian X and U , we conclude that Equation 3.26 is also

maximized by Gaussian X and U as well.

Finally the perturbation technique in (62, Section V.B) allows us to extend this result to

a general channel where H i in not necessarily square and invertible. The derivation in (62,

Section V.B) was originally devised for the general BC but it extends in a straight-forward



128

manner to the BC-DMS, since it solely relies on the channel matrix and the covariance of the

noise and not on the message set.

The region in Equation 3.26 was originally obtained in (64) for a general BC-DMS but

considering the union over any distribution PUX . To prove the theorem we need to show that

only Gaussian U and X need to be considered.

First, we notice that Equation 3.26c is always maximized by having X Gaussian by the

“Gaussian maximizes entropy” of (67). Since Equation 3.26c is maximized by Gaussian inputs,

we have to show that the region obtained by considering Equation 3.26a and Equation 3.26b only

is optimized by Gaussian inputs as well. To this end we write the region with Equation 3.26a

and Equation 3.26b as

Equation 3.26a + (1 − µ)Equation 3.26b = max
PX|U :Cov[X]≼S

µI(U ; Y1) + (1 − µ)I(X; Y2|U)

≤ µh(H1XG + Z1) − (1 − µ)h(Z2)+

(1 − µ) max
PX|U : Cov[X|U ]≼S

(
h(H1X + Z1|U) − µ

(1 − µ)
h(H2X + Z2|U)

)
,

for any µ ∈ [1/2, 1] and where XG is a Gaussian vector with KX ≼ S.
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We need not consider µ ∈ [0, 1/2] because the region in Equation 3.26 is convex and con-

tained in the triangular region

R1, R2 ≥ 0, (3.30a)

R1 + R2 ≤ I(H2XG + Z2; XG), (3.30b)

see (64).

For these reasons, the region in Equation 3.26 cannot contain any rate point with tangent

greater than −1 and thus there is no loss of generality in restricting µ in Equation 3.31 to the

interval [1/2, 1].

We now show that solution of the optimization problem

maxPX|U : Cov[X|U ]≼S, µ∈[1/2,1] h(H1X + Z1|U) − µ
1−µh(H2X + Z2|U).

must be Gaussian by using the extremal inequality of (68). We first focus on channels where

H i, i ∈ [1, 2] is square and invertible, then show how this result may be used to establish a

general channel using the perturbation techniques of (62).
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If H i, i ∈ [1, 2], are square we may write

max
PX|U : Cov[X|U ]≼S

h(H1X + Z1|U) − µ

(1 − µ)
h(H2X + Z2|U) (3.31)

=
µ

(1 − µ)
(log |H2|)−1 − (log |H1|)−1

+ max
PX|U : Cov[X|U ]≼S

h(X + H−1
1 Z1|U) − µ

(1 − µ)
h(X + H−1

2 Z2|U). (3.32)

Th. 8 in (68) grants that the solution of the optimization problem in Equation 3.32 is Gaussian

since µ/(1 − µ) > 1 for µ ∈ [0, 1/2]. Since we have established that both Equation 3.31 and

Equation 3.26c are maximized by Gaussian X and U , we conclude that Equation 3.26 is also

maximized by Gaussian X and U as well.

Finally the perturbation technique in (62, Section V.B) allows us to extend this result to

a general channel where H i in not necessarily square and invertible. The derivation in (62,

Section V.B) was originally devised for the general BC but it extends in a straight-forward

manner to the BC-DMS, since it solely relies on the channel matrix and the covariance of the

noise and not on the message set.

3.5.3 Outer bounds by transformation

Further outer bounds for the G-CIFC may be obtained by transforming the original G-

CIFC into a different channel for which capacity is known. In the transformed channel the

transmitters can reproduce the channel outputs of the original channel: this ensures that the
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transformation enlarges the capacity region thus providing an outer bound for the original

channel.

Theorem 3.5.9. Outer bound by channel transformations. For the capacity region C(a, |b|, P1, P2)

we have

C(a, b, P1, P2) ⊆
∩

A,B,C :|A|≥1,| C
1−B|b| |≥1

C

(
aA − B

C
,

C|b|
1 − B|b|

, (
√

|A|2P1 +
√

|B|2P2)2, |C|2P2

)
.

Proof. Let XN
1 (W1,W2), XN

2 (W2) be a good code for the channel (a, |b|, P1, P2). Consider now

the inputs

X ′
1 = AX1 + BX2,

X ′
2 = CX2,

on a channel with parameters (a′, |b′|, P ′
1, P

′
2) resulting in the outputs

Y ′
1 = X ′

1 + a′X ′
2 + Z1 ∝ X1 +

B + a′C

AX2
+

Z1

A
,

and

Y ′
2 = |b′|X ′

1 + X ′
2 + Z2 ∝ |b′|

|b′|B + C
X1 + X2 +

Z1

|b′|B + C
.
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If

a =
B + a′C

A
,

|b| =
|b′|

b′B + C
,

|A|2 ≥ 1,

||b′|B + C|2 ≥ 1,

P ′
1 ≥ (

√
|A|2P1 +

√
|B|2P2)2,

P ′
2 ≥ |C|2P2, (3.33)

the output of the channel (a, b, P1, P2) may be reconstructed in the channel (a′, b′, P ′
1, P

′
2). This

implies

C(a, b, P1, P2) ⊆
∩

A,B,C:|A|≥1,|C/(1−B|b|)|≥1

C

(
aA − B

C
,

C|b|
1 − B|b|

, (
√

|A|2P1 +
√

|B|2P2)2, |C|2P2

)
.

S-G-CIFC.

By considering the transformation in (Equation 3.34) with

A = 1

B = a

C = 1 − a|b|
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we see that the capacity of a general G-CIFC C(a, |b|, P1, P2) is contained in the capacity

region of S-G-CIFC C(0, |b|, |
√

P1 + a
√

P2|2, |1 − a|b||2P2).

G-CIFC in “weak interference”.

By considering the transformation in (Equation 3.34) with

A = |b|

B = a(1−|b|)
a−1

C = a|b|−1)
a−1

we have that the capacity of a general G-CIFC C(a, |b|, P1, P2) is contained in the capacity

region of G-CIFC in “weak interference” C

(
a, 1,

∣∣∣√|b|2P1 + a(1−|b|)
a−1

√
P2

∣∣∣2 ,
∣∣∣a|b|−1

a−1

∣∣∣2 P2

)
.

G-CIFC in “very strong interference”.

By considering the transformation in (Equation 3.34) with

A = |b|

B = |b|1−a|b|
|b|2−1

− a

C = 1−a|b|
|b|2−1

we have that the capacity of a G-CIFC C(a, |b|, P, P ) is contained in the capacity region of

G-CIFC C (|b|, |b|, P ′, P ′) , P ′ = P
(|b|2−1)2

max{||b|2 − 1 + |b| − a|2, |1 − a|b||2}.
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Corollary 3.5.10. Special cases of Th. 3.5.9. The capacity of the G-CIFC, C(a, |b|, P1, P2) is

contained in the capacity region of the following channels:

• S-G-CIFC:

C(a, |b|, P1, P2) ⊆ C
(
0, |b|, |

√
P1 + a

√
P2|2, |1 − a|b||2P2

)
,

• G-CIFC in “weak interference”:

C(a, |b|, P1, P2) ⊆ C

(
a, 1,

∣∣∣∣√|b|2P1 +
a(1 − |b|)

a − 1

√
P2

∣∣∣∣2 ,

∣∣∣∣a|b| − 1
a − 1

∣∣∣∣2 P2

)
,

• G-CIFC in “very strong interference”:

C(a, |b|, P, P ) ⊆ C
(
|b|, |b|, P ′, P ′) , P ′ =

P

(|b|2 − 1)2
max{||b|2 − 1 + |b| − a|2, |1 − a|b||2}

Proof. Let XN
1 (W1,W2), XN

2 (W2) be a good code for the channel (a, |b|, P1, P2). Consider now

the inputs

X ′
1 = AX1 + BX2,

X ′
2 = CX2,

on a channel with parameters (a′, |b′|, P ′
1, P

′
2) resulting in the outputs

Y ′
1 = X ′

1 + a′X ′
2 + Z1 ∝ X1 +

B + a′C

AX2
+

Z1

A
,
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and

Y ′
2 = |b′|X ′

1 + X ′
2 + Z2 ∝ |b′|

|b′|B + C
X1 + X2 +

Z1

|b′|B + C
.

If

a =
B + a′C

A
,

|b| =
|b′|

b′B + C
,

|A|2 ≥ 1,

||b′|B + C|2 ≥ 1,

P ′
1 ≥ (

√
|A|2P1 +

√
|B|2P2)2,

P ′
2 ≥ |C|2P2, (3.34)

the output of the channel (a, b, P1, P2) may be reconstructed in the channel (a′, b′, P ′
1, P

′
2). This

implies

C(a, b, P1, P2) ⊆
∩

A,B,C:|A|≥1,|C/(1−B|b|)|≥1

C

(
aA − B

C
,

C|b|
1 − B|b|

, (
√

|A|2P1 +
√

|B|2P2)2, |C|2P2

)
.

S-G-CIFC.
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By considering the transformation in Equation 3.34 with

A = 1

B = a

C = 1 − a|b|

we see that the capacity of a general G-CIFC C(a, |b|, P1, P2) is contained in the capacity

region of S-G-CIFC C(0, |b|, |
√

P1 + a
√

P2|2, |1 − a|b||2P2).

G-CIFC in “weak interference”.

By considering the transformation in Equation 3.34 with

A = |b|

B = a(1−|b|)
a−1

C = a|b|−1)
a−1

we have that the capacity of a general G-CIFC C(a, |b|, P1, P2) is contained in the capacity

region of G-CIFC in “weak interference” C

(
a, 1,

∣∣∣√|b|2P1 + a(1−|b|)
a−1

√
P2

∣∣∣2 ,
∣∣∣a|b|−1

a−1

∣∣∣2 P2

)
.

G-CIFC in “very strong interference”.

By considering the transformation in Equation 3.34 with

A = |b|

B = |b|1−a|b|
|b|2−1

− a

C = 1−a|b|
|b|2−1
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we have that the capacity of a G-CIFC C(a, |b|, P, P ) is contained in the capacity region of

G-CIFC C (|b|, |b|, P ′, P ′) , P ′ = P
(|b|2−1)2

max{||b|2 − 1 + |b| − a|2, |1 − a|b||2}.

Remark 3.5.11. The G-IFC with conferencing encoders of (69) encompasses the G-CIFC as a

special case when C12 = 0 and C21 = ∞. The outer bound in (69, Lemma 4.1) with C12 = 0

and C21 = ∞ is an outer bound for the G-CIFC. This outer bound reduces to the “strong

interference” outer bound of Th. 3.4.2 when the channel is a G-CIFC. In particular we notice

that for a CIFC, unlike for a classical IFC and the IFC with conferencing encoders, no bounds

of the form 2R1 + R2 are known. In (69) the authors provide an interesting interpretation of

this type of bound for a channel with and without conferencing transmitters. With regard to

this interpretation we point out that, with full a priori knowledge of the primary message, the

cognitive transmitter can always pre-code its message against the interference from the primary

user and thus the strategy of the primary encoder never limits the rate of the cognitive receiver.

3.6 Inner bounds

In Chapter 2 we introduce a new inner bound for the Discrete Memoryless CIFC (DM-

CIFC) and show that this scheme encompasses all previously proposed achievable schemes as

special cases; it is thus the largest known achievable rate region to date. This achievable scheme

also introduces new transmission features that were crucial in proving capacity for the semi-

deterministic DM-CIFC of Th. 2.9.1. Here we use the inner bound of Th. 2.6.1 as a unified

framework to present the achievable schemes used in the remainder of the chapter. In this

section we introduce the general achievable scheme in Th. 2.6.1 and use it to obtain six simple
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sub-schemes that will be used in the following sections to prove capacity and constant gap

results.

As the Gaussian CIFC encompasses classical interference, multiple-access and broadcast

channels, the achievable rate region of Th. 2.6.1 incorporates a combination of the transmission

techniques devised for these channels.

• Rate-splitting. Both the primary and the cognitive message are split into private and

common parts, as in the Han and Kobayashi scheme (18) for the IFC. Although rate-

splitting was shown to be unnecessary in the “weak interference” (26) and “very strong

interference” (22) regimes of Equation 3.2 and Equation 3.6, respectively, it allows signif-

icant rate improvement in the “strong interference” regime.

• Superposition-coding. The cognitive common message is superposed to the primary com-

mon message and parts of the cognitive message are superposed to parts of the primary

message. Useful in multiple-access and broadcast channels (46), a simple superposition

of the primary and cognitive messages (all common) is capacity achieving in the “very

strong interference” regime (22).

• Pre-coding. Gel’fand-Pinsker coding (48), often referred to as binning or Dirty Paper

Coding (DPC), allows a transmitter to pre-code (portions of) the interference known to

be experienced at the receiver. Binning is also used by Marton in (49) to derive the largest

known achievable rate region for the BC. In the scheme of Th. 2.6.1, binning is performed

at the cognitive encoder for both the common and the private message and it allows for

the cancellation of interference from the primary transmitter.
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• Broadcasting. In Chapter 2 we introduced the idea of having the cognitive encoder trans-

mit part of the primary message. This is made possible by the perfect knowledge of the

primary message at the cognitive transmitter, which is specific to this channel model. The

additional primary message is superposed to the cognitive common message and also pre-

coded against the cognitive private message. The incorporation of the broadcast feature

at the cognitive transmitter was initially motivated by the fact that in certain regimes,

this strategy was shown to be capacity achieving for the high-SNR linear deterministic

approximation of the CIFC (70).

The achievable scheme may be described as follows:

• Rate-splitting. The independent messages W1 and W2, uniformly distributed on M1 =

[1 : 2nR1 ] and M2 = [1 : 2nR2 ] respectively, are rate split into the messages Wi, i ∈

{1c, 2c, 1pb, 2pb, 2pa}, all independent and uniformly distributed on [1 : 2nRi ], each en-

coded using the RV Ui.

• Primary encoder. Transmitter 2 sends X2 that carries the private message W2pa (“p” for

private, “a” for alone) superposed to the common message W2c carried by U2c (“c” for

common).

• Cognitive encoder. The common message of transmitter 1, encoded by U1c, is binned

against X2 conditioned on U2c. The private message of transmitter 2, W2pb, encoded by

U2pb (“b” for broadcast) and a portion of the private message of transmitter 1, W1pb,

encoded as U1pb, are binned against each other as in Marton’s region (49) conditioned on

U1c, U2c, X2. Transmitter 1 sends X1, which is a function of all the RVs.
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• Primary decoder. Receiver 2 jointly decodes U2c (carrying W2c), U1c (carrying W1c), U2pb

(carrying W2pb), and X2 (carrying W2pa).

• Cognitive decoder. Receiver 1 jointly decodes U1c (carrying W1c), U2pb (carrying W2pb),

and U1pb (carrying W1pb).

• Analysis. The codebook generation, encoding, decoding and the error analysis are pro-

vided Chapter 2.

Corollary 3.6.1. Achievable region R(RTD) in Th. 2.9.1.

A rate pair (R1, R2) such that

R1 = R1c + R1pb, (3.35a)

R2 = R2c + R2pa + R2pb (3.35b)
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is achievable for a general DM-CIFC if (R′
1c, R

′
1pb, R

′
2pb, R1c, R1pb, R2c, R2pa, R2pb) ∈ R8

+ satis-

fies:

R′
1c ≥ I(U1c; X2|U2c) (3.36a)

R′
1c + R′

1pb ≥ I(U1pb; X2|U1c, U2c) + I(U1c;X2|U2c) (3.36b)

R′
1c + R′

1pb + R′
2pb ≥ I(U1pb; X2, U2pb|U1c, U2c)

+I(U1c; X2|U2c) (3.36c)

R2c + R2pa + (R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c, X2, U2c)

+I(U1c; X2|U2c) (3.36d)

R2pa + (R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c, X2|U2c) + I(U1c;X2|U2c)(3.36e)

R2pa + (R2pb + R′
2pb) ≤ I(Y2; U2pb, X2|U1c, U2c) + I(U1c;X2|U2c)(3.36f)

(R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c|X2, U2c) + I(U1c;X2|U2c)(3.36g)

(R2pb + R′
2pb) ≤ I(Y2; U2pb|U1c, X2, U2c) (3.36h)

R2c + (R1c + R′
1c) + (R1pb + R′

1pb) ≤ I(Y1; U1pb, U1c, U2c), (3.36i)

(R1c + R′
1c) + (R1pb + R′

1pb) ≤ I(Y1; U1pb, U1c|U2c), (3.36j)

(R1pb + R′
1pb) ≤ I(Y1; U1pb|U1c, U2c), (3.36k)

for some input distribution

PY1,Y2,X1,X2,U1c,U2c,U2pa,U1pb,U2pb
= PU1c,U2c,U2pa,U1pb,U2pb,X1,X2PY1,Y2|X1,X2

.
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Figure 9. The achievable schemes of Section 3.6.

We now present six different sub-schemes obtained from the achievable scheme of Corollary

3.6.1 by reducing the number of rate splits to at most three rather than five. By setting some

rates to zero we may drop the corresponding RVs and simplify the region in Equation 3.36. The

resulting transmission schemes are used in the rest of the chapter for achievability proofs (for

capacity and constant gap results) and numerical evaluations. Figure 9 and 3.6 help illustrate

the different schemes: Figure 9 shows, for each scheme, which rate splits in the R(RTD) are set

to zero (the corresponding RV is in gray) and which ones are not (the corresponding RV is in

black), while 3.6 indicates which result will be proved with the corresponding scheme.
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U2c U1c X2 U1pb U2pb Role Where
(A) • • constant gap in a subspace Th. 3.8.4
(B) • • capacity in “weak interference” Th. 3.4.1, 3.8.1, 3.8.3
(C) • • • constant gap in the whole parameter region Th. 3.8.1
(D) • • capacity in “very strong strong interference” Th. 3.4.3

constant gap in a subspace Th. 3.8.4
(E) • • capacity for the “primary decodes cognitive” Th. 3.7.1, 3.7.3

constant gap in a subspace Th. 3.8.3, 3.8.4
(F) • • • numerical results Sec. 3.9

Figure 10. The role of the different achievable schemes in the following Sections

3.6.1 Achievable scheme with U2pb and U1pb: capacity achieving for the degraded

broadcast channel.

Motivation: Achieve the capacity to within a finite gap in some parameter regime by having trans-

mitter 2 silent.

Consider the case where transmitter 2 is silent and transmitter 1 transmits to both decoders.

In this case, the G-CIFC with P2 = 0 reduces to a degraded BC with input X1 (71). When |b| <

1, Y2 is a degraded version of Y1 and the maximum achievable rate region when transmitter 2

is silent is

R1 ≤ I(Y1; U1pb) − I(U1pb;U2pb), (3.37a)

R2 ≤ I(Y2; U2pb) (3.37b)

taken over the union over of all α ∈ [0, 1]. When |b| ≥ 1, Y1 is a degraded version of Y2 and the

maximum achievable rate region when transmitter 2 is silent is
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R1 ≤ I(Y1;U1pb), (3.38a)

R2 ≤ I(Y2;U2pb|U1pb) (3.38b)

taken over the union of all α ∈ [0, 1].

3.6.2 Achievable scheme with X2 and U1pb: capacity achieving in the “weak interference”

regime.

Motivation: Completeness.

In this scheme both messages are private and receiver 2 treats the interference from trans-

mitter 1 as noise while transmitter 1 performs perfect DPC against the interference from trans-

mitter 2. This scheme achieves capacity in the “weak interference regime” of Th. 3.4.1 (26).

3.6.3 Achievable scheme with X2, U1pb and U2pb: capacity achieving in the semi-deterministic

DM-CIFC.

Motivation: Achieve the “strong interference” outer bound to within a constant gap in the whole

parameter regime.

This achievable strategy is obtained by combining the previous two transmission schemes,

scheme (A) and (B), and it corresponds to the capacity achieving scheme for the semi-deterministic

G-CIFC in Th. 2.9.1. The broadcasting RV U2pb appears only in the R(RTD) region and in

(51; 50). The achievable rate region is
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R1 ≤ I(Y1; U1pb) − I(U1pb; X2)

Equation 3.40
= log(σ2

1pb + αP1) − log
(

σ2
1pb +

Var[X1 + aX2]
1 + Var[X1 + aX2]

)
, (3.39a)

R2 ≤ I(Y2; U2pb, X2)

Equation 3.40
= log(1 + Var[|b|X1 + X2]) − log

(
1 +

σ2
2pbVar[|b|X1|X2 ]

σ2
2pb + Var[|b|X1|X2 ]

)
, (3.39b)

R1 + R2 ≤ I(Y2; U2pb, X2) + I(Y1;U1pb) − I(U1pb; U2pb, X2)

Equation 3.40
≤ Equation 3.39a + Equation 3.39b + log

1 −

∣∣∣[|b|P1α −
√

σ2
1pbσ

2
2pb]

+
∣∣∣2

(|b|2P1α + σ2
2pb)(P1α + 1)

(3.39c)

where

X1pb ∼ NC(0, αP1)

X2 ∼ NC(0, P2), independent of X1pb,

X1 = X1pb +
√

ᾱP1

P2
X2

U1pb = X1 + aX2 + Z1pb

U2pb = |b|X1 + X2 + Z2pb, (3.40)

and  Z1pb

Z2pb

 ∼ NC

0,

 σ2
1pb ρpb

√
σ2

1pbσ
2
2pb

ρ∗pb

√
σ2

1pbσ
2
2pb σ2

2pb


 ,
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for |ρpb| ≤ 1. The assignment in Equation 3.40 is inspired by the capacity achieving scheme

for the semi-deterministic CIFC of Th. 2.9.1where U1pb and U2pb are set to be equal to Y1 and

Y2 respectively. The inequality in Equation 3.39c is obtained by optimizing ρpb as detailed in

Th. 3.8.1.

3.6.4 Achievable scheme with U1c and U2c: capacity achieving in “very strong interference”

regime.

Motivation: Completeness.

This scheme achieves the “strong interference” outer bound of Th. 3.4.2 under the “very

strong interference” conditions of Th. 3.4.3 (24). The achievable rate region is

R1 ≤ I(Y1;X1|X2)
Equation 3.42

= C((1 − |ρ|2)P1), (3.41a)

R1 ≤ I(Y2; X1|X2)
Equation 3.42

= C((1 − |ρ|2)|b|2P1), (3.41b)

R1 + R2 ≤ I(Y1;X1, X2)
Equation 3.42

= C(P1 + |a|2P2 + 2Re{a∗ρ}
√

P1P2), (3.41c)

R1 + R2 ≤ I(Y1;X1, X2)
Equation 3.42

= C(|b|2P1 + P2 + 2|b|Re{ρ}
√

P1P2), (3.41d)

where the RHS of Equation 3.41 is achieved with the assignment

X1c ∼ NC(0, (1 − |ρ|2)P1)

X2 ∼ NC(0, P2), independent of X1c,

X1 = X1c + ρ

√
P1

P2
X2, (3.42)
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for some |ρ| ≤ 1. This scheme was originally proposed for real-valued channels in (24). Here

we consider its extension to complex-valued valued channels.

3.6.5 Achievable scheme with X2, U1c: capacity achieving in the primary decodes

cognitive regime.

Motivation: Achieve capacity in the “primary decodes cognitive” regime.

In this scheme the primary message is private while the cognitive message is public and

binned against the interference created by the primary user at the cognitive decoder. This

scheme can also be obtained as a special case of the scheme in (25) and (51). The achievable

rate region is

R1 ≤ I(Y1; U1c) − I(U1c; X2)

Equation 3.45
= f

(
a +

√
ᾱP1

P2
, 1;λ

)
, (3.43a)

R2 ≤ I(Y2; U1c, X2) − (I(Y2; U1c) − I(U1c; X2))

Equation 3.45
= C(P2 + |b|2P1 + 2

√
ᾱ|b|2P1P2) − f

(
1
|b|

+
√

ᾱP1

P2
,

1
|b|2

; λ

)
, (3.43b)

R1 + R2 ≤ I(Y2; U1c, X2)

Equation 3.45
= C(P2 + |b|2P1 + 2

√
ᾱ|b|2P1P2), (3.43c)
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for

f(h, σ2;λ) , I(X1c + hX2 + σZ1; U1c) − I(U1c; X2)

Equation 3.45
= log

 σ2 + αP1

σ2 + αP1|h|2P2

αP1+|h|2P2+σ2

∣∣∣ λ
λCosta(h,σ2)

− 1
∣∣∣2
 ,

with

λCosta(h, σ2) , αP1

αP1 + σ2
h, (3.44)

and where the RHS of Equation 3.43 is achieved with the assignment

X1c ∼ NC(0, αP1)

X2 ∼ NC(0, P2)

X1 ∼ X1c +
√

ᾱP1

P2
X2

U1c = X1c + λX2, (3.45a)

for some α ∈ [0, 1] and λ ∈ C. Note that f(h, σ2; λ) ≥ 0 if
∣∣∣ λ
λCosta(h,σ2)

− 1
∣∣∣2 ≤ 1 +

αP1 + σ2

|h|2P2
.

3.6.6 Achievable scheme with U2c, X2 and U1c.

Motivation: Achieve capacity in the largest subset of the “strong interference” regime.
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As for scheme (C), this scheme is obtained by combining the previous two schemes, scheme

(D) and (E). The achievable rate region is

R1 ≤ I(Y1; U1c|U2c) − I(X2; U1c|U2c), (3.46a)

R1 ≤ I(Y2; U1c, X2|U2c), (3.46b)

R1 + R2 ≤ I(Y2; U2c, X2, X1c), (3.46c)

R1 + R2 ≤ I(Y2; X2|U1c, U2c) + I(Y1; U1c, U2c), (3.46d)

2R1 + R2 ≤ I(Y2; U1c, X2|U2c) + I(Y1; U1c, U2c) − I(U1c; X2|U2c). (3.46e)

In particular, we consider the choice of RVs

X2c, X2pa, X1c ∼ iid NC(0, 1) (3.47a)

X2 =
√

βP2X2c +
√

β̄P2X2pa (3.47b)

X1 =
√

αP1X1c +
√

ᾱP1

(√
γX2c +

√
γ̄X2pa

)
(3.47c)

U1c = X1c + λX2pa (3.47d)

U2c = X2c. (3.47e)

This scheme unifies the two schemes that achieve capacity in two different parameter regimes

of of |b| > 1 and hence is the scheme that achieves capacity in the largest subset of the “strong

interference” regime.
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3.7 New capacity results

We now present two new capacity results for the G-CIFC. The first capacity result uses

scheme (E) to achieve the “strong interference” outer bound in what we term the “primary

decodes cognitive” regime, a subset of the “strong interference” regime that is not included in

the “very strong interference” regime of Th. 3.4.3, for which capacity is already known. The

second capacity result focuses on the S-G-CIFC where we show that the BC-DMS-based outer

bound of Th. 3.5.2 is achieved by scheme (E) for a large set of parameters where capacity

was previously unknown. Although the two results involve the same achievable scheme (E), in

the first result the cognitive receiver performs Costa’s “interference pre-cancellation” (or pre-

coding) of the interference from the primary receiver while, in the second result, no pre-coding

in necessary. In scheme (E) the pre-coding operation has an interesting effect on the rate region

that we investigate in detail in Remark 3.7.2.

Before presenting the new results, we describe scheme (E) in more detail. The achievable

rate region is expressed in two parameters: α and λ. The parameter α denotes the fraction of

power that encoder 1 employs to transmit its own message versus the power to broadcast X2.

For α = 0, transmitter 1 uses all its power to broadcast X2 as in a virtual Multiple Input Single

Output (MISO) channel. When α = 1, transmitter 1 utilizes all its power to transmit X1c. The

parameter λ controls the amount of interference (created by X2 at receiver 1) “pre-cancellation”
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achievable using DPC at transmitter 1. With λ = 0, no DPC is performed at transmitter 1 and

the interference due to X2 is treated as noise. On the other hand, with λ = λCosta for

λCosta

(
a +

√
ᾱP1

P2
, 1

)
, λCosta 1,

with λCosta(·, ·) defined in Equation 3.44, the interference due to X2 at receiver 1 is completely

“pre-canceled”, thus achieving the maximum possible rate R1. Different values of λ are not

usually investigated because, as long as the interference is a nuisance (i.e., no node in the

network has information to extract from the interference), the best is to completely “pre-cancel”

it by using λ = λCosta(h, σ2).

However, λ influences not only the rate R1 in Equation 3.43a, but also the rate R2 in

Equation 3.43b. An interesting question is whether λ ̸= λCosta 1, although it does not achieve

the largest possible R1, would improve the achievable rate region by sufficiently boosting the

rate R2. We comment on this question later on in Section ??. At this point we make the

following observation: R1 is a concave function in λ, symmetric around λ = λCosta 1 and with

a global maximum at λ = λCosta 1, while R2 is a convex function in λ, symmetric around

λ = λCosta 2 and with a global minimum at λ = λCosta 2, where

λCosta

(
1
|b|

+
√

ᾱP1

P2
,

1
|b|2

)
, λCosta 2.

Figure 11 shows R1 in Equation 3.43a and R2 in Equation 3.43b as a function of λ ∈ R, for

P1 = P2 = 6, b =
√

2, a =
√

0.3, and α = 0.5. For the chosen parameters, we observe a
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Figure 11. The bound for R1 in Equation 3.43a (bottom) and the bound for R2

in Equation 3.43b (top) as a function of λ ∈ R, for P1 = P2 = 6, b =
√

2, a =
√

0.3, α = 0.5.

trade-off among the rates: λ = λCosta 1 achieves the maximum for R1, but it achieves close to

the minimum for R2. This observation will help in understanding why scheme (E) does not

perform well in certain parameter regimes as will be pointed out in Remark 3.7.2.
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3.7.1 New capacity results for the C-CIFC.

Theorem 3.7.1. Capacity in the “primary decodes cognitive” regime. When |b| > 1

and

P2|1 − a|b||2 ≥ (|b|2 − 1)(1 + P1 + |a|2P2) − P1P2

∣∣1 − a|b|
∣∣2, (3.48a)

P2|1 − a|b||2 ≥ (|b|2 − 1)(1 + P1 + |a|2P2 + 2Re{a}
√

P1P2), (3.48b)

the “strong interference” outer bound of Th. 3.4.2 is tight and achieved by scheme (E).

The “primary decodes cognitive” regime, illustrated in Figure 12 in the (a, |b|)-plane for

a ∈ R and P1 = P2 = 10, covers parts of the “strong interference” regime |b| > 1 where capacity

was not known. It also shows that the scheme in Equation 3.43 (i.e., scheme (E)) is capacity

achieving for part of the “very strong interference” region in Equation 3.6, thus providing an

alternative capacity achieving scheme to superposition coding (24) (i.e., scheme (D)).

Proof. We compare the achievable scheme (E) in Section 3.6.5 with the “strong interference”

outer bound of Th. 3.4.2. Scheme (E) for |b| > 1, λ = λCosta 1 and the assignment in Equa-

tion 3.43. This achieves Equation 3.8a=Equation 3.43a and Equation 3.8c=Equation 3.43c
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Figure 12. A representation of the capacity result of Th. 3.7.1 for a G-CIFC with a ∈ R,
P1 = P2 = 10 and (a, |b|) ∈ [−5, 5] × [0, 5].

(and Equation 3.8b is redundant). Therefore the “strong interference” outer bound is achiev-

able when (Equation 3.43a+Equation 3.43b)≥Equation 3.8b, i.e. when

C(αP1) = f
(
a +

√
ᾱP1
P2

, 1;λCosta 1

)
≥ f

(
1
|b| +

√
ᾱP1
P2

, 1
|b|2 ; λCosta 1

)
, ∀α ∈ [0, 1],

⇐⇒ αP1 + |lCostaa|2P2 −

∣∣∣|b|αP1 + λ
(
P2 +

√
ᾱ|b|2P1P2

)∣∣∣2
|b|2P1 + P2 + 2

√
ᾱ|b|2P1P2 + 1

≥ αP1

αP1 + 1
, ∀α ∈ [0, 1],

⇐⇒
(

αP1

αP1 + 1

)2 Q(α)
1 + |b|2P1 + P2 + 2

√
ᾱ|b|2P1P2

≥ 0, ∀α ∈ [0, 1], (3.49a)
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where

Q(α) , P2

∣∣1 − a|b|
∣∣2(αP1 + 1) − (|b|2 − 1)

(
P1 + |a|2P2 + 2Re{a}

√
ᾱP1P2 + 1

)
.

Clearly the condition in Equation 3.49a is verified if for all α ∈ [0, 1] we have Q(α) ≥ 0. Q(α)

is a quadratic function in x =
√

1 − α of the form c1x
2+c2x+c3 with c1 = −P1P2|1−a|b||2 ≤ 0,

which implies that Q(α) is concave in α. Hence, the inequality in Equation 3.49a is verified

for every α ∈ [0, 1] if it is verified for α = 1 and α = 0. The condition Q(0) ≥ 0 corresponds

to Equation 3.48b while the condition Q(1) ≥ 0 corresponds to Equation 3.48a.

Remark 3.7.2. Previous capacity results for the G-CIFC imposed conditions on the channel pa-

rameters that lent themselves well to “natural” interpretations. For example, the “weak inter-

ference” condition I(Y1; X1|X2) ≥ I(Y2; X1|X2) of (26) in Equation 3.2 suggests that decoding

X1 at receiver 2, even after having decoded the intended message in X2, would constrain the

rate R1 too much, thus preventing it from achieving the interference-free rate in Equation 3.8a.

The “very strong interference” condition I(Y1;X1, X2) ≥ I(Y2; X1, X2) of (24) in Equation 3.4

suggests that requiring receiver 1 to decode both messages should not prevent achieving the

maximum sum-rate at receiver 2 given by Equation 3.8c. A similar intuition about the new

“primary decodes cognitive” capacity condition in Equation 3.48 unfortunately does not emerge

from the proof of Th. 3.7.1.

To provide some insight on the achievability conditions of Th. 3.7.1, we focus on the

condition in Equation 3.48a. When Equation 3.48a is verified, scheme (E) in Section 3.6.5
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achieves the “strong interference outer” bound point for α = 0 in Equation 3.5: to achieve more

points on the “strong interference” outer bound Th. 3.4.2 stricter conditions are necessary; to

achieve all the points on the outer bound, both conditions Equation 3.48a and Equation 3.48b

must be verified.

A representation of the region where the condition in Equation 3.48a holds is depicted in

Figure 13 for the case a ∈ R and P1 = P2 = P with increasing P , in which case Equation 3.48a

becomes

P (P + 1)|1 − a|b||2 ≥ (|b|2 − 1)(P + 1 + |a|2P ). (3.50)

We observe that, as P increases, the region where the condition in Equation 3.50 is not verified

shrinks. Indeed, as P → ∞, the condition in Equation 3.50 is always verified unless the channel

is degraded (i.e., a|b| = 1). For a degraded channel with “strong interference”, the primary

receiver is able to reconstruct Y1 from Y2 once W2 has been decoded, as seen in Equation 3.19.

This means that U1c may be decoded at the primary receiver with no rate penalty for the

cognitive user. Under this condition, the scheme with a common cognitive message and a

private primary one seems a natural choice, reminiscent of the capacity achieving scheme in

the degraded BC. Despite this intuition, in a degraded channel with large power P , λCosta 1

approaches λCosta 2 (similarly to the case depicted in Figure 11) and thus the maximum of the

rate R1 in Equation 3.43a approaches the minimum of the rate R2 in Equation 3.43b. This
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Figure 13. Condition Equation 3.50 for different values of P1 = P2 = P for a G-CIFC with
a ∈ R and (a, |b|) ∈ [−0.5, 1, 5] × [1, 5].

rate penalty for the R2-bound prevents us from achieving the “strong interference” outer bound

point for α = 0 in Equation 3.5 when a|b| = 1.

Another consideration provides further insight on the condition in Equation 3.48a: take a

channel where

1
|b|

= a
P1

P1 + 1
. (3.51)
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Then, as P1 → ∞ in Equation 3.51 and for α = 0, this condition approaches the degraded

condition a|b| = 1. For this choice of a, Y2 may be rewritten as Y2 = |b|U1c + Z2, so that the

R2-bound of Equation 3.43b for α = 0 becomes

R2 ≤ I(Y2, U1c; X2) = I(U1c; X2) = C

(
P2

|b|2P1

)
.

This observation reveals an interesting aspect of the RV U1c. U1c is DPC coded against X2 with

the objective to remove (some of) the interference created by X2 at Y1. However, decoder 2 is

not interested in removing X2 from Y2 (it must decode X2!). Hence, for decoder 2, U1c acts as

“side information” when decoding X2. Now, both U1c and Y2 contain X2, but for this specific

choice of parameters Y2 is a noisy version of U1c. This shows why the scheme performs poorly

close to the degraded line: there is no gain for receiver 2 from having two observations (i.e., Y2

and U1c) of the intended message X2 as they are noisy versions of each other.

3.7.2 New capacity results for the S-G-CIFC.

Theorem 3.7.3. Capacity for S-G-CIFC. For an S-G-CIFC (i.e., a = 0) with

|b| ≤

√
1 + P2

(
1 − P1

P1 + 1

)
(3.52)

or with

|b| ≥
√

P1P2 + P2 + 1 +
√

P1P2 (3.53)
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Th. 3.5.7 is tight.

Proof. When |b| ≤ 1, capacity is known so we focus only on the case |b| > 1. By setting a = 0

in Th. 3.7.1 we obtain that scheme (E) with λ = λCosta 1 achieves the “strong interference”

outer bound for

(|b|2 − 1)(1 + P1) ≤ min{P2, P2(1 + P1)} = P2,

which is equivalent to Equation 3.52.

Scheme (E) with λ = 0 achieves

R1 ≤ I(Y1; U1c) − I(U1c; X2) = I(Y1; U1c) = C
(

αP1
1+ᾱP1

)
,

R2 ≤ I(Y2, U1c;X2) = I(Y2; X2|U1c) = C
(
(
√

P2 +
√

ᾱ|b|2P1)2
)

,

R1 + R2 ≤ I(Y2; X2, U1c) = C
(
α|b|2P1 + (

√
P2 +

√
ᾱ|b|2P1)2

)
.

In this case the MIMO-BC outer bound may be achieved when the sum rate outer bound

Equation 3.24c is redundant, that is, if

1 + P2 + |b|2P1 + 2
√

ᾱ|b|2P1P2 ≥ 1 + P1

1 + ᾱP1
(1 + P2 + |b|2P1 − α|b|2P1 + 2

√
ᾱ|b|2P1P2) ∀α ∈ [0, 1]

⇐⇒ |b|2 ≥ 1 + P2 + 2
√

ᾱ|b|2P1P2 ∀α ∈ [0, 1]

⇐⇒ |b|2 ≥ 1 + P2 + 2
√

|b|2P1P2

which corresponds to Equation 3.53.
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Figure 14. A schematic representation of the capacity results for the S-G-CIFC in Th. 3.7.3.

A representation of the region where capacity is known for the S-G CIFC is depicted in

Figure 14. Capacity remains unknown for

√
1 + P2

(
1 − P1

P1 + 1

)
≤ |b| ≤

√
1 + P2 + P1P2 +

√
P1P2

3.8 Capacity to within a constant gap

In the last couple of years a novel approach to the difficult task of determining the capacity

region of a multi-user Gaussian network has been suggested. Rather than proving an equality

between inner and outer bounds, the authors of (35) (and references therein) advocate a pow-

erful new method for obtaining achievable rate regions that lie within a bounded distance from

capacity region outer bounds, thereby determining the capacity region to within a constant gap

for any channel configuration. Two measures are used to determine the distance between inner

and outer bounds: the additive gap and the multiplicative gap. An additive gap corresponds
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to a finite difference between inner and outer bound, while a multiplicative gap corresponds to

a finite ratio. The additive gap is useful at high SNR, where the difference between inner and

outer bound is small in comparison to the magnitude of the capacity region, while the multi-

plicative gap is useful at low SNR, where the ratio between inner and outer bounds is a more

indicative measure of their distance. In this section we show the capacity to within an additive

gap of half a bit/s/Hz per real dimension and to within a multiplicative gap of a factor two.

We also determine additional constant gap results that suggest which strategies approach the

“strong interference” outer bound in different parameter regimes. Since the expressions of the

BC-based outer bound of Th. 3.5.2 and of the BC-DMS-based outer bound of Th. 3.5.3 involve

many parameters over which to optimize, it is not analytically straightforward to determine

conditions for achievability; for this reason we restrict our attention to the “strong interference”

outer bound of Th. 3.4.2. These results are derived for the complex-valued channel and rather

than for the real-valued channel as done in (72).

Theorem 3.8.1. Additive gap. Capacity is known to within half a bit/s/Hz per real dimen-

sion.

Proof. The capacity for weak interference (|b| ≤ 1) was determined in (26), so we only need

to concentrate on the strong interference regime (|b| > 1). We show the achievability of the

“strong interference” outer bound in Equation 3.5 to within a constant additive gap using the

scheme (E) of Section 3.6.3 with the assignment in Equation 3.40. The assignment proposed

in Equation 3.40 is inspired by the capacity achieving scheme for deterministic channels in Th.
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2.10.1, where we showed that setting Uc = Yc, c ∈ {1, 2}, is optimal. In a noisy channel, it is

not possible to choose Uc = Yc; we mimic this by setting Uc ∼ Yc, c ∈ {1, 2}.

Consider the achievable rate region in Equation 3.39 and note that

Var[X1 + aX2] = P1 + |a|2P2 + 2Re{a}
√

ᾱP1P2,

Var[|b|X1 + X2] = |b|2P1 + P2 + 2
√

ᾱ|b|2P1P2.

The inequality in Equation 3.39c follows by choosing

ρpb = arg min
ρ

I(U1; U2|X2)

= arg min
ρ

|E[U1U
∗
2 |X2]|2

= arg min
ρ

∣∣∣|b|P1α + ρ
√

σ2
1pbσ

2
2pb

∣∣∣2
= −min

1,
|b|P1α√
σ2

1pbσ
2
2pb

 .

With σ2
2pb = 0 and σ2

1pb = 1 in Equation 3.39 we have

R1 ≤ log(1 + αP1) − GAP(α), (3.54a)

R1 + R2 ≤ log(1 + Var[|b|X1 + X2]) − GAP(α), (3.54b)
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with GAP(α) bounded as

GAP(α) = log
(

1 +
Var[X1 + aX2]

1 + Var[X1 + aX2]

)
≤ log(2) = 1,

as claimed. Notice that with σ2
2pb = 0, the R2-bound in Equation 3.39b is equivalent to the

sum-rate outer bound in Equation 3.5b and it is thus redundant.

To prove the multiplicative gap result, we utilize a looser version of Th. 3.5.1 that we present

in the next lemma.

Lemma 3.8.2. “Piecewise linear strong interference” outer bound. The outer bound

of Th. 3.5.1 for |b| > 1 is contained in the region R(PL−SI) defined as:

R1 ≤ C (P1) , (3.55a)

R1 + R2 ≤ C
(
(
√

|b|2P1 +
√

P2)2
)

. (3.55b)

Proof. The bound in Equation 3.55a (respectively Equation 3.55b) is obtained by considering

the maximum value of Equation 3.8a (respectively Equation 3.8c) over α ∈ [0, 1].

The region R(PL−SI) in Equation 3.55 has two Pareto optimal points:

A =
(
0, C

(
(
√

|b|2P1 +
√

P2)2
))

, (3.56a)

B =
(
C(P1), C((

√
|b|2P1 +

√
P2)2) − C(P1)

)
. (3.56b)
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The point A is on the boundary of the “strong interference” outer bound region R(SI) of Th.

3.4.2 while Point B has the same R1-coordinate as the point for α = 0 in R(SI), given by

C =
(
C(P1), C(|b|2P1 + P2) − C(P1)

)
, (3.57)

but lies outside R(SI). However the two points are no more than one bit away, i.e., R
(B)
2 ≤

log(2) + R
(C)
2 , as we will show later.

Theorem 3.8.3. Multiplicative gap. For a Gaussian C-IFC, the capacity is known to within

a factor two.

Proof. The capacity for weak interference (|b| ≤ 1) was determined in (26), thus we only need

to concentrate on the strong interference regime (|b| > 1).

Outer bound:

We use the “piecewise linear strong interference” outer bound of Lemma 3.8.2, in particular

we rewrite the outer bound as

R2 ≤ log
(
1 + |b|2P1 + P2 + 2

√
|b|2P1P2

)
− R1

, R
(PL−SI)
2 (R1), (3.58)

for R1 ∈ [0, log(1 + P1)].

Achievability to within a factor two: Consider the following TDMA strategy. The rate-point

(R1, R2) = (log(1 + P1), 0) ,
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is achievable by silencing the primary transmitter, while the rate-point A in Equation 3.56a is

achievable by beamforming. Hence, the following region is achievable by time sharing

R2 ≤
(

1 − R1

log(1 + P1)

)
log(1 + (

√
|b|2P1 +

√
P2)2)

, R
(tdma)
2 (R1). (3.59)

The multiplicative gap is given by the smallest M ≥ 1 for which

MR
(tdma)
2 (R1/M) ≥ R

(PL−SI)
2 (R1), (3.60)

that is

(
1 − R1

M log(1 + P1)

)
M log(1 + (

√
|b|2P1 +

√
P2)2) − log

(
1 + (

√
|b|2P1 +

√
P2)2

)
+ R1 ≥ 0.(3.61)

The LHS of Equation 3.61 is a linear function of R1 and thus has at most one zero. From this,

it follows that the inequality in Equation 3.61 is verified for every R1 ∈ [0, log(1 + P1)] if it is

verified at the boundary points of the interval. For R1 = 0, the inequality is verified for M ≥ 1

while for R1 = log(1 + P1) it is verified if M ≥ 2; thus the smallest M for which Equation 3.61

is verified for all channels is M = 2.

We remark here that we consider the multiplicative gap as the ratio of the outer bound over

the inner bound; as originally introduced in (36) the multiplicative gap is defined as the ratio

between the inner bound over the outer bound.
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What Scheme Regime gap

perfect interference cancelation (E)
P2(1 + |a|2 − 2Re{a}|b|) ≥
(b2 − 1)(P1 + 1) − P1P2|1 − |a|b|2 .5

non perfect interference cancelation (E) |b| > 1 and |b|2P1 ≤ P2 1.87
cognitive (A) |b| ≤ 1 and |b|2P1 > P2 1
broadcasting (A) |b| > 1 and |b|2P1 > P2 1.5
interference stripping (D) |a| ≥ 1, |b| > 1 and |b|2P1 ≤ P2 1.5

A schematic plot of the proofs of Th. 3.8.1, Th. 3.8.3 and Lemma 3.8.2 is provided in ??.

The green hatched area represents the achievable rate region with scheme (E) in Equation 3.39

which lies to within half a bit/s/Hz per real dimension from the “strong interference” outer

bound of Equation 3.5, illustrated by a solid blue line. The green cross-hatched area represents

the achievable rate region with time sharing in Equation 3.59 while the green dashed line is the

region in Equation 3.59 multiplied by a factor two, which contains the “piecewise linear strong

interference outer bound” in Equation 3.55, illustrated by a dotted blue line.

3.8.1 Additional constant gap results

In this section we provide additional additive gap results for specific subsets of the parameter

region. Our aim is to provide insights on the relationship between inner and outer bounds for

the region where capacity is still unknown.

Corollary 3.8.4. The additive gaps between inner and outer bound in 3.8.1 are achievable

under the prescribed conditions.

Proof. The proof is detailed in the following sections.
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Figure 15. A graphical representation of Th. 3.8.1 and Th. 3.8.3.
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In particular we consider four transmission strategies and show where they achieve capacity

to within a constant gap:

• Perfect interference cancelation. By using the scheme (E) with Costa’s DPC we can

achieve the “strong interference” outer bound to within a constant gap in a larger pa-

rameter region than the “primary decodes cognitive” regime, where it achieves capacity.

Scheme (E) with Costa’s DPC achieves the “strong interference” outer bound to within a

constant gap in a larger parameter region than the “primary decodes cognitive” regime,

where it achieves capacity. In this region, both the additive and the multiplicative gaps

are smaller than that of Th. 3.8.1 respectively.

• Non perfect interference cancelation. The scheme (E) with a specific DPC strategy

achieves the “strong interference” outer bound to within a constant gap when the SNR is

larger the INR at the primary receiver. The choice of DPC differs from Costa’s and it fa-

vors the decoding of the common cognitive message at the primary decoder and enhances

the performance for channel parameters close to the degraded G-CIFC.

• Cognitive broadcasting. When the INR is larger that the SNR the primary receiver,

scheme (A) achieves a constant gap from the outer bound in both the “weak” and the

“strong interference” regime. In this scheme the primary transmitter is silent and the

cognitive transmitter acts as a broadcast trasmitter.

• Interference stripping. Scheme (D) achieves the “strong interference” outer bound to

within a constant gap in a larger parameter region than the “very strong interference”
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regime, where it achieves capacity. In this scheme both decoders decode both messages

as in a compound MAC.

In the following we use the fact that point B in Equation 3.56b is to within one bits/s/Hz

and a factor two from point C in Equation 3.57. This is the case as, for the additive gap,

R
(B)
1 = R

(C)
1 and

R
(B)
2 − R

(C)
2 = C

(
2
√

|b|2P1P2

1 + |b|2P1 + P2

)
≤ C

(√
P2

P2 + 1

)
≤ log(2) = 1, (3.62)

where we use the fact that R
(B)
2 − R

(C)
2 has a maximum in |b|2P1 = P2 + 1.

A representation of “strong interference” outer bound and the “piecewise linear strong in-

terference” outer bound is shown in Figure 15. The “strong interference” outer bound coincides

with the “piecewise linear strong interference” outer bound at point A and the largest distance

between the two outer bounds is attained between points B and C. This figure also introduces

a new corner point of the inner bound: point D, the inner bound point with the largest R2 rate

when R1 = C(P1) − ∆1.

3.8.1.1 Perfect interference cancellation

In the proof of Th. 3.7.1 we have seen that under condition Equation 3.48a it is possible

achieve point C in Equation 3.57 with scheme (E) with Costa’s DPC. This result may be used

to show achievability of the “strong interference” outer bound to within half a bit/s/Hz per

real dimension.
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Theorem 3.8.5. If condition in Equation 3.48a holds, the “strong interference” outer bound

of Th. 3.4.2 is achievable to within half a bit/s/Hz per real dimension.

Proof. Under the condition in Equation 3.48a, point C is achievable. This point lies to within

half a bit/s/Hz per real dimension from the outer bound.

3.8.1.2 Non perfect interference cancellation

Although it is not possible to achieve point C using scheme (E) and perfect interference

cancellation, it is possible to achieve this point to within a bounded distance using non perfect

interference cancellation in the strong interference (|b| > 1) and strong signal (P2 ≥ |b|2P1)

regimes.

Theorem 3.8.6. When |b| > 1 and P2 ≥ |b|2P1, the outer bound of Th. 3.4.2 may be achieved

to within 1.87 bits/s/Hz per real dimension.

Proof. To prove this theorem we show the achievability of a point D in Figure 15 which lies

at a bounded distance from point C using scheme (E) in Equation 3.43 for α = 0. Figure 15

shows the different additive gaps between inner and outer bound points in the following proof.

If equation Equation 3.43a is tight there are two possible scenarios: the corner point D is

determined by 1) the intersection between Equation 3.43c and Equation 3.43a or by 2) the

intersection of Equation 3.43b and Equation 3.43a. We choose λ so that both Equation 3.43a

and Equation 3.43b lie within a finite distance from R
(B)
1 and R

(B)
2 respectively. The sum rate

bound Equation 3.43c does not depend on the choice of λ and is always equal to R
(C)
1 + R

(C)
2 .

We divide the proof in two subcases Re{a} ≷ |b|−1.
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Sub-case Re{a} ≤ |b|−1: When P1 ≤ 1 a gap of 1 bit per dimension is achievable by having

both transmitters transmit to receiver 2 at rate R
(C)
2 . In this case the distance along the rate

R2 is zero and on the rate R1 is R
(C)
1 − 0 ≤ log(1 + 1) < 2. For P1 ≥ 1 let λ = P1−

√
P1

P1+1 a, in

Equation 3.43. The distance between inner and outer bound for R1 is

∆1 , R
(C)
1 − R

(D)
1 = log

(
1+P1+2|a|2P2

1+P1+|a|2P2

)
≤ 1,

where we have used the inequality P2 ≥ |b|2P1. Similarly letting Equation 3.43b hold with

equality, we obtain

∆2 , R
(C)
2 − R

(D)
2

≤ maxa:Re{a}≤|b|−1 log

 1+2P2
1+P1

1+P2

∣∣∣∣1− (P1−
√

P1)a |b|
1+P1

∣∣∣∣2


≤ log
(

(1+P1)(1+2P2)

(1+P1)(1+P2+P1)+2P2
√

P1

)
≤ log

(
1+2P2

1+P2+P1

)
≤ 1,

where we have used that the expression has a global maximum in a∗ > 1
|b| . The largest gap

between the inner bound and B is thus bounded by max {1 + ∆1, ∆1 + ∆2} = 2, and so the

overall gap between the specified achievable scheme of Equation 3.43 and the outer bound is

within 1 + 2 = 3 bits/s/Hz for a complex valued channel.
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Sub-case Re{a} > |b|−1: When P1 ≤ 3 a gap of 1 bit per dimension is achievable by having

transmitter 1 remain silent (rate R1 = 0) since in this case R
(B)
1 − 0 ≤ log(3+1). When P1 > 3

let λ = P1+2
√

P1
P1+1 in Equation 3.43. The gap for R1 may be bounded as

∆1 , R
(C)
1 − R

(D)
1 = log

(
1 + P1 + 5|a|2P2

1 + P1 + |a|2P2

)
≤ log(5),

while that for the rate R2 of transmitter 2 may be bounded as

∆2 , R
(C)
2 − R

(D)
2 (3.63a)

≤ max
a:Re{a}≤|b|−1

log

 1 + 2P2

(1 + P1)
(

P2

∣∣∣1 − P1+2a|b|
√

P1

1+P1

∣∣∣2 + 1
)
 (3.63b)

≤ log
(

(1 + P1)(1 + 2P2)
P2 − 4P2

√
P1 + 4P2P1 + (1 + P1)2

)
(3.63c)

≤ log
(

(1 + P1)(1 + 2P2)
2P1P2 + (1 + P1)2

)
(3.63d)

≤ log
(

P1 + 1
P1

)
(3.63e)

≤ log
(

4
3

)
, (3.63f)

where Equation 3.63c follows since the expression has a global maximum for a(opt) < 1
|b| and

Equation 3.63d follows since 4P1 − 4
√

P1 + 1 > 2P1 for P1 > 3. Finally Equation 3.63e and

Equation 3.63f follow since the expression is monotonically increasing in P2 and decreasing in P1.

As in the sub-case Re{a} ≤ |b|−1, the maximum distance between points C and D is bounded

by max {1 + ∆1, ∆1 + ∆2} ≤ log
(

20
3

)
so that the overall gap is bounded by log

(
40
3

)
≈ 3.74

bits/s/Hz for a complex valued channel.
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We note that in the proof of Th. 3.8.6, non perfect interference cancellation in crucial.

The choice λ = λCosta 1 + ϵ, with ϵ an appropriate decreasing function of the transmit powers,

yields a finite gap to capacity although in general this choice does not allow the achievability

of point C. This choice of λ can be interpreted as follows. From Equation 3.43b, we see that

U1c plays the role of side information at receiver 2 when decoding X2. The DPC coefficient

λ = λCosta 1+ϵ favors the decoding of U1c at receiver 2 while slightly degrading the rate of user 1

in Equation 3.43a. In particular, the achievable scheme in Section 3.6.5 for λ = λCosta 1 + ϵ

achieves:

R1 ≤ Equation 3.43a = log (1 + αP1) − log
(

1 +
(αP1 + 1)2P2

αP1(1 + P1 + |a|2P2 + 2Re{a}
√

ᾱP1P2)
|ϵ|2
)

,

R2 ≤ Equation 3.43b = log
(
1 + |b|2P1 + P2 + 2

√
ᾱ|b|2P1P2

)
+

+ log

(
1

1 + α|b|2P1
+

(α|b|2P1 + 1)P2

αP1(1 + |b|2P1 + P2 + 2
√

ᾱ|b|2P1P2))
|ϵ + ∆λ|2

)
,

where ∆λ = λCosta 1 −λCosta 2. Let ϵ be small and with the same phase as ∆λ. From the above

expressions, we see that the decrease of R1 is of the order O(|ϵ|2), while the increase of R2 is

of the order O(|ϵ|). This demonstrates how one can trade residual interference at the cognitive

receiver for rate improvement at the primary receiver, which makes use of U1c to decode its own

message.
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A natural question at this point is whether it is possible to achieve capacity by using the

strategy in Section 3.6.5 with some choice of λ = λCosta 1 + ϵ. Unfortunately, the answer is

negative:

Lemma 3.8.7. The “strong interference” outer bound of Th. 3.4.2 can be achieved by scheme

(E) in Equation 3.43 only in the “primary decodes cognitive” regime of Th. 3.7.1.

Proof. This result is shown by observing that only one choice of α and λ in Equation 3.43

achieves both the sum rate bound in Equation 3.5b and the R1 bound in Equation 3.5a–the

choice which corresponds to the “primary decodes cognitive” regime of Th. 3.7.1. To distinguish

the parameters α in the inner and outer bound, let α(out) be the α parameter in the outer bound

in Equation 3.5 and α(in) be the α parameter in Equation 3.43.

Consider the region Equation 3.5 for a fixed α(out). We first notice that to achieve the

sum rate outer bound in Equation 3.5b we have to pick the α(in) in Equation 3.43 such that

α(in) ≤ α(out) (because the expressions are monotonically decreasing in α). On the other hand,

the maximum rate R1 in Equation 3.43a for α(in) ≤ α(out) is always smaller than the outer bound

for R1 in Equation 3.5, with equality only if α(in) = α(out) and λ = λCosta 1. So to achieve

both the sum rate outer bound and the R1 rate outer bound we must have α(in) = α(out) and

λ = λCosta 1, which are the specific assignments considered in Th. 3.7.1.
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3.8.2 Further considerations on the utility of partial interference “pre-cancellation”

In spite of the result of Lemma 3.8.7, in the following lemma we show that the largest inner

bound region with the scheme of Section 3.6.5 is achieved by λ ̸= λCosta 1. Finding the λ that

minimizes the distance between the inner and outer bounds is analytically involved. Instead,

we consider the simpler problem of determining the value of λ that maximizes the sum rate.

Lemma 3.8.8. When |b| > 1 and the “very strong interference” condition is not satisfied,

setting λ to a solution of

− P2(|b|2H−1
2 − H−1

1 +
H−1

2 − H−1
1

αP1
)|λ|2+

2
(√

ᾱP1P2(|b|2H−1
2 − H−1

1 ) + P2(|b|H−1
2 − Re{a}H−1

1 )
)

Re{λ}+

αP1(|b|2H−1
2 − H−1

1 ) = 0. (3.64)

for

H1 = E[|Y1|2] = 1 + |a|2P2 + P1 + 2Re{a}
√

ᾱP1P2,

H2 = E[|Y2|2] = 1 + P2 + |b|2P1 + 2
√

ᾱ|b|2P1P2,

yields the largest achievable sum rate in the scheme of Section 3.6.5 for a given α ∈ [0, 1].
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Proof. This result is established by observing that Equation 3.43c is the maximum achievable

sum rate for a fixed α. Then, the λ that maximizes the sum rate must satisfy Equation 3.43a+

Equation 3.43b = Equation 3.43c, that is,

f
(
a +

√
ᾱP1

P2
, 1; λ

)
= f

( 1
|b|

+
√

ᾱP1

P2
,

1
|b|2

; λ
)
. (3.65)

After some algebra, we rewrite the condition in Equation 3.65 as in Equation 3.64.

Notice that there always exist real-valued solutions (i.e., λ ∈ R) for in Equation 3.64.

Indeed, when the “very strong interference” condition is not verified, and |b| ≥ 1, we have

H1 ≤ H2 for all α ∈ [0, 1], and thus it follows that: the coefficient of |λ|2 is negative, the

coefficient of Re{λ} is positive, and the constant term is positive. By choosing Im{λ} = 0, the

equation Equation 3.64 reduces to the quadratic function in Re{λ}, which has positive definite

determinant and thus has at least one real-valued solution.

3.8.2.1 Cognitive broadcasting

The outer bound Thm 3.4.1 is achievable in “weak interference”: the capacity achieving

scheme in this regime is scheme (B) in Section 3.6.2 and it employs Costa’s DPC at the cognitive

transmitter to “pre-cancel“ the known interference generated by the primary user. While

capacity is known in this regime, we show that the very simple broadcast strategy of scheme

(A) in Section 3.6.1 achieves capacity to within a constant gap from the outer bound when

the INR is larger than the SNR at the primary receiver ( i.e |b|2P1 > P2). When the INR

is larger than the SNR at the primary receiver, scheme (A) achieves a constant gap from the
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outer bound in “strong interference” as well. Although the resulting gap does not improve on

the result of Th. 3.8.1, this result suggests that, in a general scheme, rate improvement may

be obtained by having the cognitive transmitter send part of the primary message.

Theorem 3.8.9. When |b| < 1 and |b|2P1 ≥ P2, the outer bound of Th. 3.4.1 may be achieved

within 1 bit/s/Hz per real dimension.

Consider the strategy (A) in Section 3.6.1 for |b| ≤ 1. Then since Equation 3.3a and Equa-

tion 3.37a are the same for every α there is zero gap for the rate R1. By considering the

difference between Equation 3.3b and Equation 3.37b, the gap for the rate R2 is bounded as

Equation 3.3b − Equation 3.37b ≤ C
(
|b|2P1 + P2 + 2

√
ᾱ|b|2P1P2

)
− C

(
|b|2P1

)
≤ C

(
P2+2

√
|b|2P1P2

1+|b|2P1

)
≤ C

(
3|b|2P1

1+|b|2P1

)
≤ log(4) = 2.

Theorem 3.8.10. When |b| > 1 and |b|2P1 ≥ P2, the outer bound of Th. 3.4.2 may be achieved

within 1.5 bits/s/Hz per real dimension.

Proof. Consider scheme (A) in Section 3.6.1 for |b| > 1 and α = min{1, 1/P1} in Equation 3.38:

the gap for user 1 is

∆1 , R
(B)
1 − R

(C)
1 = C(min{1, P1}) ≤ log(2) = 1,
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while the gap for user 2 (using P2 ≤ |b|2P1 and |b|2 ≥ 1) is

∆2 , R
(B)
2 − R

(C)
2 ≤ C

(
1 + 2|b|2P1

(1 + P1)(1 + |b|2 min{1, P1})

)
≤ max

{
log
(

2|b|2

1 + |b|2

)
, log

(
2

1 + P1

)}
≤ log(2) = 1.

As shown in Figure 15, the achievable point C in Equation 3.57 is at most at 1+∆1+∆2 ≤ 3 bits

from the outer bound. By time sharing between points A and C, we have an achievable rate

region that is at most at max{1, 3} = 3 bits/Hz/s from the outer bound for complex valued

channel.

3.8.2.2 Interference stripping

Theorem 3.8.11. When |a| ≥ 1 , |b| ≥ 1 and |b|2P1 ≤ P2, the outer bound of Th. 3.4.2 may

be achieved within 1.5 bits/s/Hz per real dimension.

Proof. We consider scheme (D)’s performance in the “strong interference” regime when |b2| >

1, |a|2 ≥ 1. When we set α = 1, it achieves the rate

R1 ≤ C (P1)

R1 + R2 ≤ C
(
min{|a|2P2 + P1, P2 + |b2|P1}

)
.
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Figure 16. G-CIFC with “strong interference”: the “strong interference” outer bound, the
piecewise linear “strong interference” outer bound and the achievable region by time sharing

among points A and C;



180

Referring again to Figure 15, the gap between points B and C may be bounded as

∆1 , R
(B)
1 − R

(C)
1 ≤ log(2) = 1,

and

∆2 , R
(B)
2 − R

(C)
2 ≤ C

(
1 + |b2|P1 + P2

1 + min{|a|2P2 + P1, P2 + |b|2P1}

)
≤ C

(
max

{
1,

1 + |b|2P1 + P2

1 + |a|2P2 + P1

})
≤ C

(
max

{
1,

1 + 2P2

1 + |a|2P2 + P1

})
≤ C

(
max

{
1,

1 + 2P2

1 + |a|2P2 + P1

})
≤ log(2) = 1.

We thus achieve a rate pair that lies within 1 + ∆1 + ∆1 = 3 bits/s/Hz of the outer bound for

complex valued channel .

3.9 Numerical results

We now revisit each of the previous sections and provide numerical examples of the results

therein. In the following we restrict ourselves to real-valued input/output G-CIFC so as to

reduce the dimensionality of the search space for the optimal parameter values.
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3.9.1 Numerical Results for Section 3.5: Outer bounds

In Section 3.5 we introduced the tightest outer bound for a GCIFC in “strong intereference”,

obtained as the intersection of the “strong interference” outer bound of Th. 3.4.2 and the BC

based outer bound of Th. 3.5.2. This outer bound has a simple closed form expression for the

degraded G-CIFC and the S-G-CIFC: Figure 17 and Figure 18 present the result of Corollaries

3.5.5 and 3.5.7 respectively, where the intersection of the “strong interference” outer bound and

the BC-based outer bound for the degraded G-CIFC and the S-G-CIFC is derived. Note that we

chose two channels where the two bounds intersect for some R1 ∈ (0, C(P1)] and neither bound

strictly includes the other. The two outer bounds coincide at the point A in Equation 3.56a.

The maximum rate R1 in the “strong interference” outer bound and the BC-based outer bound

for the S-G-CIFC are the same: in this channel transmitter 2 does not influence the output at

receiver 1 and hence full receiver cooperation does not increase the maximum attainable rate

R1.

For a general G-CIFC the intersection between the “strong interference” and the BC-based

outer bound has no simple closed form expression. Consequently, it is difficult to determine

where one dominates and find their intersection analytically. In Figure 19 we show that the

two bounds can intersect up to two times.
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Figure 17. The “strong interference” outer bound and the BC-based outer bound for the
degraded G-CIFC.

The outer bounds of Th. 3.5.9 are presented in Figure 20 which shows that these outer

bounds may be tighter than either the “strong interference” or the BC-based outer bounds.

Unfortunately, in the examples we considered, we did not find an instance where the outer

bounds of Th. 3.5.9 were tighter than the intersection of the “strong interference” and the

BC-based outer bound. Despite this, we believe that our approach in transforming the channel

provides a general, useful tool to derive outer bounds for channels with cognition.
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Figure 18. The “strong interference” outer bound and the BC-based outer bound for the
S-G-CIFC (right).

3.9.2 Numerical Results for Section 3.6: Inner bounds

In Section 3.6 we introduced the R(RTD) achievable rate region and derived six sub-schemes

from this general inner bound: in the following we plot these sub-schemes for the degraded

channel, the S channel and a general G-CIFC. The “strong interference” and the “weak inter-

ference” outer bounds are provided for reference. Note that both the achievable rate regions

and the outer bounds are expressed as a function of one parameter only, α ∈ [0, 1], that controls

the amount of cooperation between the cognitive and the primary transmitters.
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Figure 19. The “strong interference” outer bound and the MIMO BC outer bound for a
general G-CIFC in proximity to point C.

We begin by considering the degraded G-CIFC in Figure 21. The scheme that yields the

largest achievable rate region in scheme (E) with the choice λ = λCosta 1. Despite its superior

performance (to other presented schemes) we may analytically show that this scheme cannot

achieve either the “strong interference” or the BC-based outer bound.

Both schemes (A) and (B) treat the interference at noise at receiver 1 and thus the maximum

R1 may be achieved only by silencing transmitter 2. For this reason R2 → 0 as R1 → C(P1) for

these two schemes.
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Figure 20. The outer bounds of Lemma 3.5.9 alongside the “strong interference” outer bound
and the BC-based outer bound.

The channels parameters are chosen to show how scheme (E) with the choice λ = λCosta 1

achieves the “strong interference” outer bound for a subset of R1 ∈ (0,C(P1)] where the in-

equality in Equation 3.49a holds. The figure also shows how, in the S channel, it is possible

to achieve the outer bound for R1 = C(P1) with scheme (E) without DPC. This is possible

only in this channel, since X2 does not influence Y1 and no rate loss occurs at the cognitive

receiver by treating the interference as noise. Note that scheme (D) performs the worst among

all the achievable schemes: in this scheme the cognitive receiver is required to decode both

messages – a very stringent constraint since Y1 does not contain X2. In particular, R2 → 0
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Figure 21. The different schemes of Section 3.6 for the degraded G-CIFC.

when R1 → C(P1) as in schemes (A) and (B): this is so because R1 = C(P1) may be achieved

with scheme (D) only for Y1 independent of X2.

A general G-CIFC in Figure 23. In this example, scheme (E) with λ = 0 performs better

than the scheme with λ = λCosta 1 for small R1 while the opposite is true for large R1. This

is the first instance in which we see that a single choice of λ does not yield the largest inner

bound: for small INR, is better for the cognitive user to treat the interference as noise, while

for large INR it is more advantageous to perform Costa’s DPC.

From Section 3.5.2 we know that, for |b| > 1, the cognitive receiver can decode the primary

message with no additional rate penalties; this may be observed by comparing scheme (E)

with Costa’s DPC and scheme (B). The primary message is private in both schemes while



187

Figure 22. The achievable schemes of Section 3.6 for the S-G-CIFC.

the cognitive message is common in scheme (E) and private in scheme (B). Since the primary

receiver can decode the cognitive message at no cost, scheme (E) with Costa’s DPC achieves

larger rates than scheme (B). When no DPC is used (λ = 0) in scheme (E), the cognitive

receiver observes an equivalent additive Gaussian noise noise of variance 1 + |a|2P2: for this

region rate R1 is always bounded by R1 ≤ C(P1/(1+ |a|2P2)) and thus scheme (B) outperforms

scheme (E) with no DPC in the interval R1 ∈ [C(P1/(1 + |a|2P2), C(P1)].

The scheme (F) in Section 3.6.6 unifies capacity achieving schemes in the “very strong

interference” and the “primary decodes cognitive” regimes. It is possible that by unifying the

two schemes, we may show achievability in a larger region than the union of the two regimes.

Unfortunately determining the achievability conditions in closed form is not straightforward as

it requires the optimization of the four parameters in Equation 3.47. In Figure 24 we show
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Figure 23. The achievable schemes of Section 3.6 for a general G-CIFC.

through numerical evaluation that scheme (F) indeed achieves a larger region of than the union

of the schemes (E) and (D). Whether this scheme achieves capacity for a larger parameter

region remains an open question.

3.9.3 Numerical Results for Section 3.7: New capacity results

In Section 3.7 we determine new capacity results for the “primary decodes cognitive” regime

both for a general G-CIFC and the S-G-CIFC. In Figure 25 we plot the “primary decodes

cognitive” regime in Equation 3.48 for different transmitter powers P1 = P2 = P . Note that

the “weak interference” and the “very strong interference” regimes do not depend on P so

their plot does not vary. As the power P increases, the “primary decodes cognitive” region

expands from the line |b| = 1 to cover a larger region around the degraded line. Interestingly
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Figure 24. The achievable region of schemes (D), (E) and (F) for a general G-CIFC.

the “primary decodes cognitive” regime intersects with the “very strong interference” regime,

thus showing that the “strong interference” outer bound may be achieved with two different

transmission schemes for some channels.

In a similar fashion, Figure 26 shows the capacity results of Th. 3.7.3 for the case P1 =

P2 = P on the plane P × |b|. For equal transmitter powers, the conditions in Equation 3.52

and in Equation 3.53 become

|b|2 ≤ 2P + 1
P + 1

≈ 2 (3.66a)

|b|2 ≥ P +
√

P 2 + P + 1 ≈ 2P (3.66b)
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Figure 25. The “primary decodes cognitive” region for different powers P1 = P2 = P for a
G-CIFC with a ∈ R and (a, |b|) ∈ [−5, 5] × [0, 5].

and these two asymptotic behaviors are clearly visible in Figure 26.
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Figure 26. The capacity results for the S-G-CIFC for the case P1 = P2 = P for
(P, |b|) ∈ [0, 5] × [0, 5].



CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this thesis we studied the cognitive interference channel: a transmission channel model

that captures the ability of wireless devices to overhear the transmission taking place over the

medium.

In chapter one we focused on the discrete memoryless cognitive interference channel and

derived new inner and outer bounds, derived the capacity region for a class of “better cognitive

decoding” channels, and obtained the capacity region for the semi-deterministic cognitive in-

terference channel. quantify the rate improvements that can be attained when one transmitter

knows the message of another transmitter non-causally. Capacity for this channel was known

in the “very weak interference regime” of (26) and in the “very strong interference regime” of

(20). General outer bounds were presented in (26) and (25). These outer bounds are expressed

as the union over the distribution of different auxiliary RVs for which no cardinality bounds

are available. General inner bounds were presented in (25) and (50) to include and generalize

the different achievable region proposed in literature. We proposed a new outer bound using

an idea originally devised for the broadcast channel in (59). This outer bound does not in-

volve auxiliary RVs and is thus more easily computable. evaluate for a specific channel. This

(26) and they coincide We also proposed a new inner bound that generalizes all other known

achievable rate regions. for this channel model and it is not clear what relationship exists be-

tween them. We propose a scheme that generalizes all the previously known scheme and, in

192
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Section 2.7, (43; 52); it was previously unclear how the performance of the scheme in (43; 52)

compared with that of other achievable rate regions. the structure of the outer bound of (26)

We determined capacity for a class of channels that we term the “better cognitive decoding”

regime. The conditions defining this regime are looser than the “very weak interference condi-

tion” of (26) and the “very strong interference condition” of (24) and is the largest region where

capacity is known. We also determined the capacity region for the class of semi-deterministic

cognitive interference channels. at the cognitive receiver result of Section 2.8 to the all class

of channels. in (26) in two different conditions using two different achievable schemes. where

capacity was determined in a subclass of the semi-deterministic cognitive interference channel.

determine capacity in a specific class of the semi-deterministic cognitive interference channel:

the deterministic cognitive interference channel. In this channel model Furthermore, for chan-

nels where both outputs are deterministic functions of the inputs, we showed the achievability

of our new outer bound. outer bound in (26), is tight for certain channels. The scheme that

achieves capacity in the deterministic cognitive interference channel uses Gelf’and-Pinsker bin-

ning against the interference created at the primary receiver. This binning is performed by

the cognitive encoder for the primary decoder. This feature of the transmission scheme was

never known before to be capacity achieving. interesting features of the capacity achieving

scheme in the deterministic cognitive interference channel. For this reason in Section 2.11 we

present two examples of deterministic cognitive interference channels to provide some insight

on the capacity achieving scheme. allowing the coordination of the transmission of primary and

cognitive encoders, so to control the interference and take advantage of the extra knowledge
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at the cognitive transmitter. modern day communication systems is potentially crucial. Only

with the understanding of which forms of collaboration are most efficient and beneficial for the

users, we can design systems and protocols that perform close to optimal. our understanding of

the role of cognition in dealing with interference and cooperation in communication networks.

Extensions of the results presented here to Gaussian channels will be presented in (73).

In Chapter 2 we presented outer bounds, inner bounds, and new capacity results for the

Gaussian cognitive interference channel. We derived the tightest known outer bound for the

cognitive interference channel in “strong interference”, which is based on the capacity of the

MIMO BC with degraded message sets. We showed the achievability of this outer bound in the

subset of the channel parameter space which we term the “primary decodes cognitive” regime.

We also proved capacity to within both an additive and a multiplicative gap, thus providing a

characterization of the capacity region in both high and low SNR.

Despite the new results presented, the capacity of th cognitive interference channel remains

unknown in general. The achievable we presented provides a comprehensive inner bound that

may yield new capacity results: only some specific choices of parameters for this region have

been considered so far and we expect that new results may be derived from this region. We

have shown that the tightest outer bound for the Gaussian cognitive interference channel in

“strong interference” is obtained as the intersection of different bounds. The expression of this

outer bound does not have a simple closed form expression except in some special cases like the

S and the degraded channels. Even in these two subcases, capacity is not known in general.

Another interesting open question is how much rate improvement is attainable with binning at
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the cognitive encoder: we have shown how dirty paper coding may be used to boost the rate of

both the primary and the cognitive user; whether non perfect interference cancellation achieves

capacity is still unknown.

Although we have established many significative results for the cognitive interference chan-

nel, many interesting problems remain open. We hope that further research in this area will

mature into a widely deployed technology that will make a difference in the future development

of wireless communication networks.
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